Suyash Bagad
\(h = H\big(\)
\(\big)\)
\(f_1\)
\(f_2\)
\(f_3\)
\(f_4\)
\(f_5\)
\(f_6\)
\(f_7\)
\(f_8\)
\(f_1\)
\(f_2\)
\(f_3\)
\(f_4\)
\(f_5\)
\(f_6\)
\(f_7\)
\(f_8\)
\(H(f_1)\)
\(H(f_2)\)
\(H(f_3)\)
\(H(f_4)\)
\(H(f_5)\)
\(H(f_6)\)
\(H(f_7)\)
\(H(f_8)\)
\(H(f_1)\)
\(H(f_2)\)
\(H(f_3)\)
\(H(f_4)\)
\(H(f_5)\)
\(H(f_6)\)
\(H(f_7)\)
\(H(f_8)\)
\(H'(H(f_1), H(f_2))\)
\(H'(H(f_3), H(f_4))\)
\(H'(H(f_5), H(f_6))\)
\(H'(H(f_7), H(f_8))\)
\(h^1_1\)
\(h^1_2\)
\(h^1_3\)
\(h^1_4\)
\(h^2_1\)
\(h^2_2\)
\(h^3_1\)
\(H'(h^1_1, h^1_2)\)
\(H'(h^1_3, h^1_4)\)
\(H'(h^2_1, h^2_2)\)
\(H(f_1)\)
\(H(f_2)\)
\(H(f_3)\)
\(H(f_4)\)
\(H(f_5)\)
\(H(f_6)\)
\(H(f_7)\)
\(H(f_8)\)
\(h^1_1\)
\(h^1_2\)
\(h^1_3\)
\(h^1_4\)
\(h^2_1\)
\(h^2_2\)
\(h^3_1\)
\(H(f_1)\)
\(H(f_2)\)
\(H(f_3)\)
\(H(f_4)\)
\(H(f_5)\)
\(H(f_6)\)
\(H(f_7)\)
\(H(f_8)\)
\(h^1_1\)
\(h^1_2\)
\(h^1_3\)
\(h^1_4\)
\(h^2_1\)
\(h^2_2\)
\(h^3_1\)
\(H(f_1)\)
\(H(f_2)\)
\(H(f_3)\)
\(H(f_4)\)
\(H(f_5)\)
\(H(f_6)\)
\(H(f_7)\)
\(H(f_8)\)
\(h^1_1\)
\(h^1_2\)
\(h^1_3\)
\(h^1_4\)
\(h^2_1\)
\(h^2_2\)
\(h^3_1\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(h^1_1\)
\(h^1_2\)
\(h^1_3\)
\(h^1_4\)
\(1\)
\(1\)
\(x_1\)
\(x_1^2\)
\(x_1^3\)
\(x_1^4\)
\(1\)
\(1\)
\(h^2_1\)
\(h^2_2\)
\(x_2\)
\(x_2^2\)
\(1\)
\(1\)
\(h^3_1\)
\(1\)
\(x_3\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)
\(L_5\)
\(R_5\)
\(L_6\)
\(R_6\)
\(L_3\)
\(R_3\)
\(L_7\)
\(R_7\)
\(L_8\)
\(R_8\)
\(L_1\)
\(R_1\)
\(L_2\)
\(R_2\)
\(L_3\)
\(R_3\)
\(L_3\)
\(R_3\)
\(L_4\)
\(R_4\)
\(H_2\)
\(H_3\)
\(H_4\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(y_1\)
\(x_2^{-1}\)
\(y_2^{-1}\)
\(x_3\)
\(y_3\)
\(1\)
\(1\)
\(1\)
\(y_1\)
\(y_1\)
\(y_1\)
\(x_1\)
\(x_1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(1\)
\(x_1\)
\(x_2^{-1}\)
\(1\)
\(1\)
\(y_2^{-1}\)
\(x_4^{-1}\)
\(T\)