\(g(x,y) = \frac{-4x}{(x^2+y^2+1)}\)
\(g_1(\textcolor{orange}{X_1}) := \sum_{X \setminus x_1}g(\textcolor{orange}{X_1},x_2, \dots, x_m)\)
\(g_2(\textcolor{orange}{X_2}) := \sum_{X \setminus x_2}g(\textcolor{green}{r_1}, \textcolor{orange}{X_2}, x_3, \dots, x_m)\)
\(C \stackrel{?}{=} g_1(0) + g_1(1)\)
\(g_1(\textcolor{green}{r_1}) \stackrel{?}{=} g_2(0) + g_2(1)\)
\(g_3(\textcolor{orange}{X_3}) := \sum_{X \setminus x_3}g(\textcolor{green}{r_1}, \textcolor{green}{r_2}, \textcolor{orange}{X_3}, x_4, \dots, x_m)\)
\(g_m(\textcolor{orange}{X_m}) := g(\textcolor{green}{r_1}, \textcolor{green}{r_2}, \dots, \textcolor{green}{r_{m-1}}, \textcolor{orange}{X_m})\)
\(g_2(\textcolor{green}{r_2}) \stackrel{?}{=} g_3(0) + g_3(1)\)
\(g_{m-1}(\textcolor{green}{r_{m-1}}) \stackrel{?}{=} g_m(0) + g_m(1)\)
\(g_{m}(\textcolor{green}{r_{m}}) \stackrel{?}{=} g(\textcolor{green}{r_1}, \textcolor{green}{r_2}, \dots, \textcolor{green}{r_m})\)
Prover \(\mathcal{P}\)
Verifier \(\mathcal{V}\)
\(g_1\)
\(r_1\)
\(g_2\)
\(g_3\)
\(g_m\)
\(r_{m-1}\)
\(r_2\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\sum_{a \in H}f(a) = f(0) \cdot |H|\)
\(f(a^1) = c_0 \ + \ c_1a^1 \ + \ c_2a^2 \ + \ \dots \ + \ c_da^d\)
\(f(a^2) = c_0 \ + \ c_1a^2 \ + \ c_2a^4 \ + \ \dots \ + \ c_da^{2d}\)
\(f(a^3) = c_0 \ + \ c_1a^3 \ + \ c_2a^6 \ + \ \dots \ + \ c_da^{3d}\)
\(f(a^n) = c_0 \ + \ c_1a^n \ + \ c_2a^{2n} \ + \ \dots \ + c_da^{nd}\)
\(\vdots\)
\(\sum_{a \in H}f(a) =c_0\cdot |H|\)
\(f(X) = Xg(X) + v_h(X)h(X) + \sigma/|H|\)
\(\sum_{a\in H}f(a) = \sigma\)
\(\iff\)
\(f(r) \stackrel{?}{=} rg(r) + v_h(r)h(r) + \frac{\sigma}{|H|}\)
Prover
\(\textsf{AHP} = (\textsf{k, s, d}, \ \textbf{I},\ \textbf{P},\ \textbf{V})\)
Verifier
\(f:\{0,1\}^{\ast} \rightarrow \mathbb{N}\)
\(\underbrace{\hspace{1.2cm}}\)
Indexer
\(\textbf{I}(\mathbb{F}, \textmd{i}) \longrightarrow \mathbb{I} = \left(p_{0,1} \in \mathbb{F}^{<d(0,1)},\ \dots,\ p_{0,s(0)} \in \mathbb{F}^{<d(0,s(0))}\right)\)
\(\mathbf{P}(\mathbb{F}, \textmd{i}, \textmd{x}, \textmd{w})\)
\(\mathbf{V}^{\mathbb{I}}(\mathbb{F}, \textmd{x})\)
\(r_i\)
\(\left(p_{i,1} \in \mathbb{F}^{<d(i,1)},\ \dots,\ p_{i,s(i)} \in \mathbb{F}^{<d(i,s(i))}\right)\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(2\)
\(2\)
\(\nu_2\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(2\)
\(2\)
\(\nu_2\)
\(3\)
\(6\)
\(\nu_3\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(2\)
\(2\)
\(\nu_2\)
\(3\)
\(6\)
\(\nu_3\)
\(5\)
\(1\)
\(\nu_4\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(2\)
\(2\)
\(\nu_2\)
\(3\)
\(6\)
\(\nu_3\)
\(5\)
\(1\)
\(\nu_4\)
\(5\)
\(4\)
\(\nu_5\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(0\)
\(4\)
\(\nu_1\)
\(\textsf{row}\)
\(\textsf{col}\)
\(\textsf{val}\)
\(2\)
\(2\)
\(\nu_2\)
\(3\)
\(6\)
\(\nu_3\)
\(5\)
\(1\)
\(\nu_4\)
\(5\)
\(4\)
\(\nu_5\)
\(7\)
\(3\)
\(\nu_6\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(f_1(a) = \sum_{b \in H}M_{a,b}f_2(b)\)
\(g_1, h_1\)
\(\alpha\)
\(\beta_1\)
\(\sigma_2, g_2, h_2\)
\(\beta_2\)
\(\sigma_3, g_3, h_3\)
\(\alpha,\eta_A, \eta_B, \eta_C\)
\(\sigma_1, \hat{w}, s\)
\(\hat{z}_A, \hat{z}_B, \hat{z}_C, h_0\)
\(\alpha,\eta_A, \eta_B, \eta_C\)
\(\beta_1\)
\(\sigma_1, \hat{w}, s\)
\(\hat{z}_A, \hat{z}_B, \hat{z}_C, h_0\)
\(g_1, h_1\)
\(\sigma_2, g_2, h_2\)
\(\beta_2\)
\(\beta_1\)
\(g_1, h_1\)
\(\sigma_2, g_2, h_2\)
\(\beta_2\)
\(\hat{z}_A, \hat{z}_B, \hat{z}_C, h_0\)
\(\alpha,\eta_A, \eta_B, \eta_C\)
\(\sigma_1, \hat{w}, s\)
\(\sigma_3, g_3, h_3\)
\(r_M(X,Y) = M^{\star}(Y,X) := M_{x,y}u_H(X,X)\)
\(p_1(X) + p_2(X)p_3(X) = p_4(X)\)
\(\implies \ p_2(z) = v_2, \quad p_5(X) := p_1(X) + v_2p_3(X) - p_4(X) = 0\)
\(\alpha,\eta_A, \eta_B, \eta_C\)
\(\textsf{cm}_{\hat{w}}, \textsf{cm}_{\hat{z}_A}, \textsf{cm}_{\hat{z}_B}, \textsf{cm}_{\hat{s}}\)
\(\beta\)
\(\textsf{cm}_{t},\textsf{cm}_{g_1}, \textsf{cm}_{h_1}\)
\(v_{g_1}, v_{\hat{z}_B}, v_t\)
\(\textsf{cm}_{g_3}, \textsf{cm}_{h_3}\)