Price Modelling of Stablecoins
Suyash Bagad
Recall - GBM & More
Stock prices in traditional finance are modeled using GBM
Δ
S
t
S
t
=
μ
Δ
t
+
σ
Δ
t
ε
\begin{aligned} \frac{\Delta S_t}{S_t} = \mu \Delta t + \sigma \sqrt{\Delta t} \varepsilon \end{aligned}
S
t
Δ
S
t
=
μ
Δ
t
+
σ
Δ
t
ε
\begin{aligned} \frac{\Delta S_t}{S_t} = \mu \Delta t + \sigma \sqrt{\Delta t} \varepsilon \end{aligned}
log
(
S
t
S
0
)
∼
N
(
(
μ
−
σ
2
2
)
t
,
σ
t
)
\begin{aligned} \text{log}\left(\frac{ S_t}{S_0}\right) \sim \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)t , \sigma \sqrt{t}\right) \end{aligned}
log
(
S
0
S
t
)
∼
N
(
(
μ
−
2
σ
2
)
t
,
σ
t
)
\begin{aligned} \text{log}\left(\frac{ S_t}{S_0}\right) \sim \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)t , \sigma \sqrt{t}\right) \end{aligned}
⟹
\implies
⟹
\implies
When
p
>
0.5
p > 0.5
p
>
0.5
, the expected growth rate of the price of the asset is
G
HODL
=
μ
−
σ
2
2
\begin{aligned} G_{\text{HODL}} = \mu - \frac{\sigma^2}{2} \end{aligned}
G
HODL
=
μ
−
2
σ
2
\begin{aligned} G_{\text{HODL}} = \mu - \frac{\sigma^2}{2} \end{aligned}
Here the term
−
σ
2
2
-\frac{\sigma^2}{2}
−
2
σ
2
is known as the
volatility drag
.
In the same case of
p
>
0.5
p > 0.5
p
>
0.5
, if we have
2
μ
3
<
σ
<
2
μ
,
\frac{2\sqrt{\mu}}{\sqrt{3}} < \sigma < 2\sqrt{\mu},
3
2
μ
<
σ
<
2
μ
,
we have
G
LP
=
1
2
(
μ
−
σ
2
4
)
>
G
HODL
\begin{aligned} G_{\text{LP}} = \frac{1}{2}\left(\mu - \frac{\sigma^2}{4}\right) > G_{\text{HODL}} \end{aligned}
G
LP
=
2
1
(
μ
−
4
σ
2
)
>
G
HODL
\begin{aligned} G_{\text{LP}} = \frac{1}{2}\left(\mu - \frac{\sigma^2}{4}\right) > G_{\text{HODL}} \end{aligned}
Volatility
Random process
Markov process
Drift
Basis Cash
Price Profile (BAC/USD)
Stability starts
Basis Cash
We plot the distribution of
log
(
S
i
S
i
−
1
)
\text{log}\left(\frac{S_i}{S_{i-1}}\right)
log
(
S
i
−
1
S
i
)
for price data
{
S
i
}
\{S_i\}
{
S
i
}
.
Ideally for stablecoins, we should have a delta function at
X
=
0
X = 0
X
=
0
.
For all the price data, we see a Gaussian distribution centered at 0.
For all-time price data, we see a spread around
[
−
0.2
,
0.2
]
[-0.2, 0.2]
[
−
0.2
,
0.2
]
.
For more recent price data (which is stabilized around
$
1
\$1
$1
, we see the variance gets smaller.
Ampleforth
Prices before June 26th are more stable (
∼
$
1
\sim \$1
∼
$1
).
Volume trade increase led to price fluctuations.
Here too, we expect the distribution of prices to be Gaussian.
Ampleforth
Empty Set D
ϕ
\phi
ϕ
llar
Empty Set D
ϕ
\phi
ϕ
llar
Drift & Volatility Analysis
We analyse
μ
,
σ
\mu, \sigma
μ
,
σ
of BAC prices for a data set of size 542.
Plot of
(
μ
,
σ
)
(\mu, \sigma)
(
μ
,
σ
)
values for a given window size:
Drift & Volatility Analysis
As the window size increases,
μ
,
σ
\mu, \sigma
μ
,
σ
tends to stabilize
μ
\mu
μ
and
σ
\sigma
σ
roughly follow a similar profile
LP Wealth Factor
We plot the factor
f
=
σ
2
2
μ
f = \frac{\sigma^2}{2\mu}
f
=
2
μ
σ
2
, for max LP wealth growth, we want
f
∈
(
0.66
,
2
)
f \in (0.66, 2)
f
∈
(
0.66
,
2
)
.
We observe an irregular pattern here, need more investigation on this.
Resume presentation
Price Modelling of Stablecoins Suyash Bagad
Made with Slides.com
BESbswy
BESbswy
BESbswy
BESbswy