Simon Le Cleac'h and Taylor Howell
Taylor Howell
Simon Le Cleac'h
Jan Brüdigam
Zico Kolter
Mac Schwager
Zachary Manchester
https://leggedrobotics.github.io/SimBenchmark/
Linear-Time Variational Integrators in Maximal Coordinates. J. Brudigam and Z. Manchester.
Linear-Time Contact and Friction Dynamics in Maximal Coordinates using Variational Integrators.
J. Brudigam and Z. Manchester.
Discrete mechanics and variational integrators. J. E. Marsden and M. West.
Discrete mechanics and variational integrators. J. E. Marsden and M. West.
Euler-Lagrange
Discrete mechanics and variational integrators. J. E. Marsden and M. West.
discretize
Euler-Lagrange
Discrete mechanics and variational integrators. J. E. Marsden and M. West.
discretize
discretize
Euler-Lagrange
Discrete mechanics and variational integrators. J. E. Marsden and M. West.
discretize
discretize
Euler-Lagrange
Euler-Lagrange
tennis-racket effect
astronaut
Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX.
T. Erez, Y. Tassa, and E. Todorov.
Euler:
floor penetration
drift
friction
On unilateral constraints, friction and plasticity. J. J. Moreau.
friction
On unilateral constraints, friction and plasticity. J. J. Moreau.
approximation
exact
MuJoCo linear
Dojo linear
MuJoCo nonlinear
Dojo nonlinear
impact
An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coloumb Friction. D. E. Stewart and J. C. Trinkle.
impact
An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coloumb Friction. D. E. Stewart and J. C. Trinkle.
impact
An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coloumb Friction. D. E. Stewart and J. C. Trinkle.
impact
An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coloumb Friction. D. E. Stewart and J. C. Trinkle.
Dojo
MuJoCo
KKT conditions
KKT conditions
using Plots
using Dojo
rectangle(w, h, x, y) = Shape(x .+ [0,w,w,0], y .+ [0,0,h,h])
light_blue = RGBA(0.4,0.4,1.0,0.8)
f(x) = x
ϕ(x) = x
L(x, ρ) = f(x) - ρ * log.(ϕ(x))
X = 0:0.0001:1
Y = -1:0.1:1
plt = plot(ylims=(-0.2,1.0), xlims=(-0.2,1.0), yticks=[0,1], xticks=[0,1], legend=:bottomright, size=(300,300))
plot!(plt, Y, f.(Y), linewidth=6.0, color=:black, label="f(x)")
plot!(rectangle(-0.2,2,0,-1), opacity=.6, color=:red, label="ϕ(x) < 0")
anim = @animate for i = 1:10
plot!(plt, X, [1; L.(X[2:end], 10*0.5^i)], linewidth=5.0, color=light_blue, label=false)# label="ρ = 3e-1")
end
gif(anim, fps=10, "/home/simon/Downloads/anim.gif")
PHI = Vector(1:-0.005:0)
plt = plot(ylims=(-0.01,1.0), xlims=(-0.01,1.0), yticks=[0,1], xticks=[0,1], legend=:topright, size=(300,300), )
anim = @animate for i = 1:440
# for (j,κ) ∈ enumerate([1e-1, 5e-2, 1e-2])
for (j,κ) ∈ enumerate([5e-2,])
PHI_i = PHI[1:min(i,length(PHI))]
(i == 1) && plot!(plt, PHI_i, κ ./ PHI_i, color=light_blue, linewidth=1+1.5j, label="κ = $κ")
plot!(plt, PHI_i, κ ./ PHI_i, color=light_blue, linewidth=1+1.5j, label=nothing)
end
end
gif(anim, fps=40, "/home/simon/Downloads/force_solo.gif")
plot!(plt, PHI, 1e-2 ./ PHI, color=light_blue, linewidth=5.0, label="κ = 1e-2")
plot!(plt, PHI, 1e-3 ./ PHI, color=light_blue, linewidth=5.0, label="κ = 1e-3")
implicit-function theorem
Lezioni di analisi infinitesimale. U. Dini.
implicit-function theorem
Lezioni di analisi infinitesimale. U. Dini.
implicit-function theorem
Lezioni di analisi infinitesimale. U. Dini.
solution
implicit-function theorem
Lezioni di analisi infinitesimale. U. Dini.
solution
residual
implicit-function theorem
Lezioni di analisi infinitesimale. U. Dini.
solution
data
residual
Dojo: success
MuJoCo: success
Dojo: success
MuJoCo: failure
optimized with iterative LQR
augmented random search to train static linear policies
augmented random search v. augmented gradient search
ContactNets: Learning Discontinuous Contact Dynamics with Smooth, Implicit Representations. S. Pfrommer, M. Halm, and M. Posa.
ContactNets: Learning Discontinuous Contact Dynamics with Smooth, Implicit Representations. S. Pfrommer, M. Halm, and M. Posa.
learned
ground-truth
learning via quasi-Newton method
geometry
friction coefficient
ground-truth
learned
Dojo gradient