Lane Changing

- Compatibility

Requirements Engineering

Requirements Engineering

  • The process of defining, documenting, and maintaining requirements
  • 6 steps:
    • Requirements inception (需求獲取)
    • Requirements analysis(需求分析)
    • Requirements specification(需求規格)
    • Requirements validation(需求驗證)
    • Requirements management(需求管理)

Requirements Engineering in our case

  • Original requirements: collision-free
    • Issue: incompatible between systems
  • Requirements inception
    • compatibility
  • Requirements analysis, specification, validation
    • (research objective)
    • guarantee compatibility under some conditions ?

Speed-up: 15% / 20%~30%

Speed-up: 15% / 20%~30%

Speed-up: 15% / 20%~30%

ca1

加速

等速

減速

\(v = v_{\min}\)

\(v = v_{\max}\)

\(x' - x = d_{\min}\)

\(\neg blue \land \neg red\)

\(\neg blue\)

\(x' - x = d_{\min}\)

變換車道(\(|x - x'| > d_{lc}\))

ca1

加速

等速

減速

\(v = v_{\min}\)

\(v = v_{\max}\)

\(x < x' \land x' - x < d_{\min}\)

\(\neg blue \land \neg red\)

\(\neg blue\)

\(x < x' \land x' - x < d_{\min}\)

變換車道(\(|x - x'| > d_{lc}\))

li

線性加速

等加速

等減速

等速max

等速min

\(q_1\in Q\)

\(q_2\in Q\)

continuous state: \(X = \mathbb{R}^n, f\)

\(\dfrac{dx}{dt} = f_{q_1}(x)\)

constraints

\(x\in D(q_1)\)

\(x\in D(q_2)\)

\(x\in G(q_1, q_2)\)

\(e \in E\)

\(\dfrac{dx}{dt} = f_{q_2}(x)\)

\(x \gets R(e, x)\)

discrete state/graph: \(Q, E\)

constraints: \(D_{omain}, G_{uard}\)

def PeriodicSimulation(
    Q, #                  discrete state space
    X, # = R^n            continuous state space
    f, # = Q × X → R^n    vector field
    Init, # = Q × X       set of initial states
    D, # Q → P(X)         domain
    E, # in Q × Q         set of edges
    G, # E → P(X)         guard condition
    R, # E × X → P(X)     reset map
):
    dt = 0.000001
    q, x = pick(Init)
    while True:
        # edge case
        if x not in D(q):
            raise Exception("OUT_OF_DOMAIN")
        # change state (discrete transition)
        next = []
        for q2 in Q:
            if ((q, q2) in E) and (x in G(q, q2)) and (x in D(q2)):
                next.append(q2)
        # same state (continuous evolution)
        x2 = x + f(q, x) * dt
        if x2 in D(q):
            next.append(STAY)
        # test blocked
        if is_empty(next):
            raise Exception("BLOCKED")
        # choose nondeterministically
        q2 = pick(next)
        if q2 == STAY:
            x = x2
        else:
            x = pick(R((q, q2), x))
            q = q2

Issues

  • Blocking / Non-blocking
    • hard to verify
  • Non-deterministic
    • hard to verify
  • Composability
    • all variables are states
  • Zeno execution?
    • intentional deviation?

Simulation - Water Tank System

\(q_1\)

\(q_2\)

\(q_2\)

\(q_1\)

current

STAY

change state

\(dt\)

solution: binary search for the boundary

(discrete transition)

(continuous evolution)

import numpy as np
import random

def arr(*x): return np.array(x)
def pick(x): return random.choice(x)
def is_empty(x): return not bool(x)
def water(x, b = 1, l = 30, mx = 15):
    n = int(x / mx * l)
    s = '.' * n + ' ' * (l - n)
    b = int(b / mx * l)
    return s[:b] + '|' + s[b:]
DT = 0.001
eps = 1e-30
converge_threshold = 100

STAY = -1
def PeriodicSimulation(
    Q, #                  discrete state space
    X, # = R^n            continuous state space
    f, # = Q × X → R^n    vector field
    Init, # = Q × X       set of initial states
    D, # Q → P(X)         domain
    E, # in Q × Q         set of edges
    G, # E → P(X)         guard condition
    R, # E × X → P(X)     reset map
):
    q, x = pick(Init)
    t = 0
    convergence = (None, 0)
    while True:
        dt = DT
        while dt > eps:
            if not D(q, x):
                raise Exception("OUT_OF_DOMAIN")

            next = []
            for q2 in Q:
                if ((q, q2) in E) and (G(q, q2, x)) and (D(q2, x)):
                    next.append(q2)

            x2 = x + f(q, x) * dt
            if D(q, x2):
                next.append(STAY)

            if is_empty(next):
                dt /= 2
                continue

            q2 = pick(next)
            if q2 == STAY:
                x = x2
                t += dt
            else:
                x = R((q, q2), x)
                q = q2

            if convergence[0] == x.tolist():
                convergence = (convergence[0], convergence[1] + 1)
            else:
                convergence = (x.tolist(), 1)
            # print(convergence)
            if convergence[1] > converge_threshold:
                raise Exception("CONVERGED")
            break

        if not (dt > eps):
            raise Exception("BLOCKED")

        print(f'{q = },\t{water(x[0])},\t{water(x[1])},\t{t = },\tln(dt) = {int(np.log(dt))}')
        # print(f'{q = },\t{x = },\t{t = },\t{dt = }')

w = 0.5
v0 = 0.2
v1 = 0.4
r0 = 1
r1 = 1

np.set_printoptions(precision=3)
PeriodicSimulation(
    Q = [0, 1],
    X = None,
    f = lambda q, x: [arr(w-v0, -v1), arr(-v0, w-v1)][q],
    Init = [(0, arr(7, 7))],
    D = lambda q, x: [x[1] >= r1, x[0] >= r0][q],
    E = [(0, 1), (1, 0)],
    G = lambda q1, q2, x: { (0, 1): x[1] <= r1, (1, 0): x[0] <= r0 }[(q1, q2)],
    R = lambda qs, x: x,
)

Ca1

\(f_A(x, v) = (v, a)\)

\(Q = \{\ A = \text{加速},\ C = \text{等速},\ D = \text{減速}\ \}\)

\(f_C(x, v) = (v, 0)\)

\(f_D(x, v) = (v, -a)\)

\(R(\cdot, x) = x\)

\(D(A) = \{V \leq  v_{\max}\}\)

\(G(\cdot, \cdot) = ?\)

\(D(D) = \{V \geq  v_{\min}\}\)

ca0

\(L_{ane\ change}\)

\(A_{ccelerate}\)

\(C_{onstant\ speed}\)

\(D_{eccelerate}\)

high

low

\(D_L\)

\(D_A\)

\(D_D\)

\(D_C\)

priority

Flow

\((x_1', v_1') = (0, 0)\)

\((x_1', v_1') = (v_1, a_{\max})\)

\((x_1', v_1') = (v_1, a_{\min})\)

\((x_1', v_1') = (v_1, 0)\)

\(D_L \coloneqq |x_1 - x_2| \geq d_{\min}\)

\(D_A \coloneqq \begin{cases}v_2 < v_{\max} - v_\text{mgn}, &\text{ if }x_1 > x_2\\ v_2 < v_{\min} + v_\text{mgn}, &\text{ else}\end{cases}\)

\(D_C \coloneqq (v_1 = v_{\min}) \lor (v_1 = v_{\max})\)

\(D_D \coloneqq \begin{cases}v_2 > v_{\max} - v_\text{mgn}, &\text{ if }x_1 > x_2\\ v_2 > v_{\min} + v_\text{mgn}, &\text{ else}\end{cases} \coloneqq \neg D_A\)

ca0

high

low

priority

\(D_L \coloneqq |x_1 - x_2| \geq d_{\min} \coloneqq \begin{cases}x_1 - x_2 \geq d_{\min}, &\text{if }x_1 > x_2\\ x_2 - x_1 \geq d_{\min}, &\text{else}\end{cases}\)

\(D_A \coloneqq \begin{cases}(v_1 < v_{\max}) \land (v_2 < v_{\max} - v_\text{mgn}), &\text{if }x_1 > x_2\\ (v_1 < v_{\max}) \land (v_2 < v_{\min} + v_\text{mgn}), &\text{else}\end{cases}\)

\(D_C \coloneqq (v_{\min} \leq v_1) \land (v_1 \leq v_{\max})\)

\(D_D \coloneqq \begin{cases}(v_1 > v_{\min}) \land (v_2 > v_{\max} - v_\text{mgn}), &\text{ if }x_1 > x_2\\ (v_1 > v_{\min}) \land (v_2 > v_{\min} + v_\text{mgn}), &\text{ else}\end{cases}\)

\(D_L\)

\(D_A\)

\(D_D\)

\(D_C\)

\((x_1', v_1') = (0, 0)\)

\((x_1', v_1') = (v_1, a_{\max})\)

\((x_1', v_1') = (v_1, a_{\min})\)

\((x_1', v_1') = (v_1, 0)\)

\(L_{ane\ change}\)

\(A_{ccelerate}\)

\(C_{onstant\ speed}\)

\(D_{eccelerate}\)

\(v_{\min}=5,\;v_{\max}=25,\;v_{\text{mgn}}=3,\;d_{\min}=5,\;a_{\max}=3,\;a_{\min}=-2\)

Re-implementation

Model

Model

\(q_1\in Q\)

\(q_2\in Q\)

continuous state: \(X = \mathbb{R}^n, f\)

\(\dfrac{dx}{dt} = f_{q_1}(x)\)

constraints

\(x\in D(q_1)\)

\(x\in D(q_2)\)

\(x\in G(q_1, q_2)\)

\(e \in E\)

\(\dfrac{dx}{dt} = f_{q_2}(x)\)

\(x \gets R(e, x)\)

discrete state/graph: \(Q, E\)

constraints: \(D_{omain}, G_{uard}\)

Original Method

Bottleneck

Input: state \(q, x_0\); next state \(q'\)

Output: minimum \(\tau\) for transition \((q, x(\tau)) \rightarrow q'\)

\(\iff \min \tau: \begin{cases}x(0) &= x_0\\ x'(t) &= f_q(x(t))\\ x(\tau) &\in G_{q\rightarrow q'} \cap D_{q'} \end{cases}\)

\(\begin{cases}x(0) &= x_0\\ x'(t) &= f_q(x(t))\\ x(\tau) &\in G_{q\rightarrow q'} \cap D_{q'} \end{cases}\)

from sympy import symbols, Eq, Function, dsolve

X_0 = (10, 5)
A = 2
def f(x, v):
    return (v, A)

t = symbols("t")
X = symbols("X:2", cls=Function)
X = [x(t) for x in X]

equations = [
    Eq(x.diff(t), fx)
for x, fx in zip(X, f(*X))]

sol = dsolve(equations, X, ics={
    x.subs(t, 1e-30): x_0
for (x, x_0) in zip(X, X_0) })
print(sol)

min(sympy.solve(...).as_set().boundry) ?

\(\begin{cases}x(0) &= x_0\\ x'(t) &= f_q(x(t))\\ x(\tau) &\in G_{q\rightarrow q'} \cap D_{q'} \end{cases}\)

Cond = Cond & Cond
     = Cond | Cond
     = !Cond
     = f(X) >= 0
     (f is continuous)

Constraints on \(G\) and \(D\)

min(sympy.solve(...).as_set().boundry) ?

\(X \in G \iff \)Cond is true

Cond = Cond & Cond
     = Cond | Cond
     = !Cond
     = f(X) >= 0
     (f is continuous)


Decelerate = 車速 > v_min
           = !(v_min - v1 >= 0)

Accelerate = 車速 < v_max & (行駛於前 | 前車距離 > d_min)
           = !(v1 - v_max >= 0) & (x1 - x2 >= 0 | !(d_min - (x2 - x1) >= 0))

\(X \in G_{q\rightarrow q'} \cap D_{q'} \iff (f(X)\geq0 \lor g(X)\geq0)\land (\neg (h(X)\geq0))\)

\(\land\)

\(\lor\)

\(\neg\)

\(h(X) \geq 0\)

\(g(X) \geq 0\)

\(f(X) \geq 0\)

\(f\geq0\)

\(g\geq0\)

\(h\geq0\)

\(t\)

\(f\geq0\)

\(g\geq0\)

\(h\geq0\)

\(t\)

F

\(X \in G_{q\rightarrow q'} \cap D_{q'} \iff (f(X)\geq0 \lor g(X)\geq0)\land (\neg (h(X)\geq0))\)

\(f\geq0\)

\(g\geq0\)

\(h\geq0\)

\(t\)

F

\(X \in G_{q\rightarrow q'} \cap D_{q'} \iff (f(X)\geq0 \lor g(X)\geq0)\land (\neg (h(X)\geq0))\)

\(f\geq0\)

\(g\geq0\)

\(h\geq0\)

\(t\)

T

\(X \in G_{q\rightarrow q'} \cap D_{q'} \iff (f(X)\geq0 \lor g(X)\geq0)\land (\neg (h(X)\geq0))\)

Assumptions

  • Solving for minimum positive root is easy
    • \((f(X_t)\geq0 \lor g(X_t)\geq0)\land (\neg (h(X_t)\geq0))\)
    • vs \(f(X_t) = 0\)
  • Cond is general enough
Cond = Cond & Cond
     = Cond | Cond
     = !Cond
     = f(X) >= 0
     (f is continuous)
========REQUIREMENT===================
Root(F=>T)

========BASE CASES====================
Condition: f(x) > 0
T = min(nsolve(sols + f(x), [t] + X, [0] + X0))
F=>T = f(X0) > 0 ? inf : T
T=>F = f(X0) > 0 ? T : inf

========RECURSIVE CASES===============
Boolean: !A
F=>T = A(T=>F)
T=>F = A(F=>T)

Boolean: A&B
F=>T = (F&F,F&T,T&F)=>(T&T)
    ?= max(A(F=>T), B(F=>T))
T=>F = (T&T)=>(F&F,F&T,T&F)
     = min(A(T=>F), B(T=>F))

Boolean: A|B
F=>T = (F|F)=>(T|T,F|T,T|F)
     = min(A(F=>T), B(F=>T))
T=>F = (T|T,F|T,T|F)=>(F|F)
    ?= max(A(T=>F), B(T=>F))

Tree DP optimization?

\(\land\)

\(\lor\)

\(\neg\)

\(h(X) \geq 0\)

\(g(X) \geq 0\)

\(f(X) \geq 0\)

a ? b : c
= (a & b) | ((!a) & c)

Graph optimization

\(\lor\)

\(\land\)

\(\land\)

\(a\)

\(b\)

\(b\)

\(a\)

\(b\)

\(c\)

\(\neg\)

a ? b : c
= (a & b) | ((!a) & c)

Graph optimization

\(\lor\)

\(\land\)

\(\land\)

\(a\)

\(b\)

\(b\)

\(a\)

\(b\)

\(c\)

\(\neg\)

Graph optimization

\(f_1(X) \geq 0\)

\(f_2(X) \geq 0\)

\(f_3(X) \geq 0\)

\(f_4(X) \geq 0\)

\(f_5(X) \geq 0\)

\(Cond_1\)

\(Cond_2\)

\(Cond_3\)

\(Cond_4\)

push the timeline synchronously

  • Original:
    • \(f(X) \geq 0 \implies\) T
    • \(f(X) < 0 \implies\) F
  • Improved:
    • \(|f(X)| \leq \epsilon \implies\) X
    • \(f(X) > \epsilon \implies\) T
    • \(f(X) < \epsilon \implies\) F

Simulation improvement

  1. Accelerates to \(25\) m/s (max speed)
  2. \(v = 25.0000000001\) m/s
  3. \(D_C = \neg \text{too\_fast} \land \neg \text{too\_slow}\)
  4. Can't maintain constant speed

round-off error

round-off error

modes: A, B, C

w/o error

w/ error

Solutions

  • Enforce boundary:
    • Whenever blocked, move back to boundary
  • Model check:
    • Verify if behavior is defined on or across boundaries

Robustness and Implementability of Timed Automata

Simplification

  • Domain \(D = \top\)
  • Guard \(G  = \bigwedge (a_i \leq x_i \leq b_i)\)    (linear & independent)
  • Flow \(f(X) = (1, 1, \dots, 1)\)    (clock)

Error Formulation

  • drift on clocks \(\epsilon\)
    • \((S_1, X_1) \overset{t \text{ secs}}{\longrightarrow} (S_2, X_2)\)   \(\Rightarrow\)   \((S_1, X_1) \overset{t(1-\epsilon) \sim t(1+\epsilon)}{\longrightarrow} (S_2, X_2)\)
  • imprecision on guards \(\Delta\)
    • \(a_i \leq x_i \leq b_i\)   \(\Rightarrow\)   \(a_i - \Delta \leq x_i \leq b_i + \Delta\)

mode A

mode B

mode C

mode D

  • 偏差率 (\(\frac{Err}{\Delta t}\))
  • \(f_A(X) \cdot \nabla G_{A \rightarrow B}\)

Lane Changing - Compatibility

short summary

Phase 1

  • Work on Existing Method

Phase 2

  • Redesign Model

Phase 3

  • Identify Difficulties

Work on Existing Method

Work on Existing Method

Achievement

  • Speed up MATLAB code

 

Identified Issues

  • No formal definition of lane-changing systems
  • Imprecise implementation
  • Hard to maintain the original code

Redesign Model

Redesign Model

Achievement

  • Model hybrid systems based on this paper
  • Add restrictions for Guard / Domain conditions
  • Re-implement our paper's algorithm
  • Complete discrete/continuous simulation
  • Build visualization tools
Cond = Cond & Cond
     = Cond | Cond
     = !Cond
     = f(X) >= 0
     (f is continuous)

Identify Difficulties

  • Limited power of equation solvers
  • Unavoidable floating point errors
  • Errors are expected in real world interactions

Possible Solution 1

Set-based verification

  • Flow*
  • Plenty of existing work
  • No convenient tools yet
  • Explosive states?
  • May still work in most cases (trivial cases)

Possible Solution 2

Confidence score

Provide confidence score (robustness) about the simulated trace

  • May assist in downstream task decisions
  • Can't guarantee safety

Possible Solution 3

Restrictions on lane-changing systems

  • How to determine restrictions?
  • Linear boundaries?
  • The models in some papers seem oversimplified

Another way to measure robustness?

(against real world errors)

Robustness + Falsification

Idea

Error => multiple possible traces

=> sample different traces

Assumptions

  • \(\tau = \Delta t\) between two steps
  • \(\tau\) follows uniform distribution between 0 and \(\epsilon\) (e.g. 0.001)
  • deterministic hybrid system

init

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

init

minimum

robustness

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

init

minimum

robustness

sample break points

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

\(\epsilon\)

minimum

robustness

control

mode

control

mode

\(0.4\epsilon\)

\(p = 0.6\)

\(p = 0.4\)

Add-ons

  • must sample between every control mode change

1 step

1 step

0.2 step

1 step

A

B

C

D

A

B

C

D

E

F

A

B

C

D

E

F

v

y

A

B

C

D

E

F

Robustness Improvement

TODO:

  • some small bugs
  • binary search for boundary (after sampling)
  • use dijkstra in robustness improvement
  • optimize for control mode oscillation

Ca0

Ca1

Agg

Ca0

Ca1

Agg

sample

\(\tau\)

\(t\)

\(\tau\)

p=0.5

p=0.25

p=0.25

1.

2.

3.

\(\tau\)

\(t\)

1.

2.

3.

low \(R\)

high \(R\)

high \(R\)

sample

4.

p=0.25

p=0.75

A

B

C

D

E

F

\(y\)

\(\tau\)

Made with Slides.com