Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems
Speaker: Joanne Tseng
National Cheng Kung University
2014/12/13
Outline
OP1
: The original QP problem
Derivation of the decomposition matrix
OP2
: The transformed QP problem
Parallel Decomposition Technique (PDT) algorithm
Parallel Gradient Projection Method (PGPM) for STEP A2 of algorithm PDT
Parallel Gradient Updating (PGU) for STEP A3 of algorithm PDT
Define variables
n = number of training data
m = number of features
D=\{(x_i,y_i),i=1,...,n,x_i\in R^m,y_i\in \{(-1,1)\}\}
D
=
{
(
x
i
,
y
i
)
,
i
=
1
,
.
.
.
,
n
,
x
i
∈
R
m
,
y
i
∈
{
(
−
1
,
1
)
}
}
Training Support Vector Machines (SVM) for binary classification requires to solve the convex quadratic (QP) problem.
QP problem(QP1)
min
m
i
n
F(\alpha)=\frac{1}{2}\alpha^TG\alpha-\sum_{i=1}^{n} \alpha_i
F
(
α
)
=
2
1
α
T
G
α
−
∑
i
=
1
n
α
i
\sum_{i=1}^{n} y_i\alpha_i=0,
∑
i
=
1
n
y
i
α
i
=
0
,
subject to
0\leq\alpha_i\leq C,i=1,...,n
0
≤
α
i
≤
C
,
i
=
1
,
.
.
.
,
n
where
G_{ij}=y_iy_jK(x_i,x_j),i,j=1,...,n
G
i
j
=
y
i
y
j
K
(
x
i
,
x
j
)
,
i
,
j
=
1
,
.
.
.
,
n
The derivation of the decomposition matrix
QP problem(QP2)
PDT Algorithm(1/2)
PDT Algorithm(2/2)
PGPM Algorithm(1/2)
PGPM Algorithm(2/2)
PGU Algorithm(1/2)
PGU Algorithm(2/2)
Made with Slides.com