Image captioning
Semantic segmentation
Edge detection
Object detection
noise
"gibbon"
99.3% confidence
"panda"
57.7% confidence
Correctly classified
Incorrectly classified
Original images
Negative images
Constellation table by Fulo
Low-level: Edges
High-level: person segmentation
textures
object parts
symmetries
Shape matching and recognition
Shape simplification
Shape deformation with volume preservation
Image from BSDS300
Ground-truth segmentation
Ground-truth skeleton
Orientation
Scale
Symmetry probability
color similarity
Input
AMAT
Groups
(color coded)
Thinning
Segmentation
Input
AMAT
Groups
Reconstruction
P(person)
P(horse)
:
P(dog)
dog
person
head
torso
arms
legs
hands
RGB: 152x152
L1: 142x142
L2: 71x71
L3: 63x63
L4: 55x55
L5 25x25
L6 21x21
Scale 1x
Scale 1.5x
Scale 2x
Alzheimer's:
structure degeneration
Schizophrenia: volume abnormalities
[Shenton M.E. et al., Psychiatry Res. 2002]
Tumors: avoid radiation on sensitive regions
[Hoehn D. et al., Journal of Medical Cases, 2012]
Putamen
Ventricle
Caudate
Amygdala
Hippocampus
Visualization and inspection
No need for manual annotation
(time consuming, need experts,
limited reproducibility)
Non-invasive diagnosis and treatment
P(thalamus)
P(putamen)
:
P(caudate)
:
P(white matter)
2D slice
thalamus
white matter
Subcortical brain structure segmentation using FCNNs, Tsogkas et al., ISBI 2016
f(CNN output)
d(intensities)
CNN
CNN+MRF
Shakeri et al., Prior-based coregistration and cosegmentation, MICCAI 2016
Our results
Groundtruth
Chair
Monitor
Basket
Sketch-based image retrieval
3D models from sketches
Proximity
Parallelism
Continuity
Closure
Edge detector result
N
N
N
N
N
triangle
square
circle
Input patch \(P\)
Reconstruction \(\tilde P\)
Reconstruction loss \(L(P, \tilde{P})\)
encoder
decoder
Painterly rendering
Interactive segmentation
Constrained image editing
Mahsa Shakeri
Enzo Ferrante
Siddhartha Chandra
Eduard Trulls
P.A. Savalle
George Papandreou
Sven Dickinson
Nikos Paragios
Iasonas Kokkinos
Andrea Vedaldi
Symmetry
Medical imaging
Segmentation and parts