206 neutrinos
Vincent DUSAUTOIR
Antoine FORET
Sommaire
Le projet
Les calculs
Exploitations des résultats
Le projet
Jorgen Olaf
Neutrinos
Back to the future
Moyenne arithmétique
M = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}
M
=
x
1
+
x
2
+
x
3
+
.
.
.
+
x
n
n
M = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}
M
=
n
x
1
+
x
2
+
x
3
+
.
.
.
+
x
n
V = M * n
V
=
M
∗
n
V = M * n
V
=
M
∗
n
M = \frac {V + v}{n + 1}
M
=
V
+
v
n
+
1
M = \frac {V + v}{n + 1}
M
=
n
+
1
V
+
v
Écart type
\alpha = \sqrt{Var}
α
=
V
a
r
\alpha = \sqrt{Var}
α
=
√
V
a
r
Var = \frac {x_1^2 + x_2^2 + x_3^2 + ... + x_n^2} {n} * H^2
V
a
r
=
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
n
2
n
∗
H
2
Var = \frac {x_1^2 + x_2^2 + x_3^2 + ... + x_n^2} {n} * H^2
V
a
r
=
n
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
n
2
∗
H
2
V = (Var + H^2) * n
V
=
(
V
a
r
+
H
2
)
∗
n
V = (Var + H^2) * n
V
=
(
V
a
r
+
H
2
)
∗
n
Var = \frac {V + v^2} {n + 1} * H^2
V
a
r
=
V
+
v
2
n
+
1
∗
H
2
Var = \frac {V + v^2} {n + 1} * H^2
V
a
r
=
n
+
1
V
+
v
2
∗
H
2
Moyenne quadratique
\overline {x} = \sqrt {\frac{x_1^2 + x_2^2 + x_3^2 + ... + x_x^2}{x_1^2 n + x_2^2n , + x_3^2 n + ... + x_x^2 n}}
x
‾
=
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
x
2
x
1
2
n
+
x
2
2
n
,
+
x
3
2
n
+
.
.
.
+
x
x
2
n
\overline {x} = \sqrt {\frac{x_1^2 + x_2^2 + x_3^2 + ... + x_x^2}{x_1^2 n + x_2^2n , + x_3^2 n + ... + x_x^2 n}}
x
=
√
x
1
2
n
+
x
2
2
n
,
+
x
3
2
n
+
.
.
.
+
x
x
2
n
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
x
2
V = x_1^2 + x_2^2 + x_3^2 + ... + x_x^2
V
=
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
x
2
V = x_1^2 + x_2^2 + x_3^2 + ... + x_x^2
V
=
x
1
2
+
x
2
2
+
x
3
2
+
.
.
.
+
x
x
2
\overline {x} = \sqrt {\frac {1}{n + 1} * (V + v^2)}
x
‾
=
1
n
+
1
∗
(
V
+
v
2
)
\overline {x} = \sqrt {\frac {1}{n + 1} * (V + v^2)}
x
=
√
n
+
1
1
∗
(
V
+
v
2
)
Moyenne Harmonique
H = \frac {1}{\frac {1}{x_1} + \frac {1}{x_2} + \frac {1}{x_3} + ... + \frac {1}{x_n}}
H
=
1
1
x
1
+
1
x
2
+
1
x
3
+
.
.
.
+
1
x
n
H = \frac {1}{\frac {1}{x_1} + \frac {1}{x_2} + \frac {1}{x_3} + ... + \frac {1}{x_n}}
H
=
x
1
1
+
x
2
1
+
x
3
1
+
.
.
.
+
x
n
1
1
V = n / H
V
=
n
/
H
V = n / H
V
=
n
/
H
H = \frac {n + 1} {V + \frac {1}{v}}
H
=
n
+
1
V
+
1
v
H = \frac {n + 1} {V + \frac {1}{v}}
H
=
V
+
v
1
n
+
1
Exploitations des calculs
Bonus
Des questions ?
Made with Slides.com