Wei Zhu (祝伟)
Tsinghua Astro Student Seminar
2022 March 4
Einstein (1936); Paczynski (1986); Mao & Paczynski (1991)
\(t_{\rm E} \sim 30{\rm days} \left(\frac{M_{\rm L}}{M_\odot}\right)^{1/2} \)
\( t_q \sim 40{\rm min} \left(\frac{q}{10^{-6}}\right)^{1/2} \left( \frac{t_{\rm E}}{30 \rm days}\right) \)
背景恒星亮度
背景恒星
”透镜“星体
\( t_{\rm E} \)
\( t_q \)
(see also Bennett+2002, Agol+2002)
OGLE-1999-BUL-32: \( t_{\rm E} = 640 \) days
\( t_{\rm E} = \frac{\theta_{\rm E}}{\mu_{\rm rel}} \approx f(M_{\rm L}, D_{\rm L}, \mu_{\rm rel}) \)
Microlensing toward the bulge:
White dwarf (WD): 17%
Neutron star (NS): 3%
Black hole (BH): 1%
(see also Gould 2000)
How can we tell BH lenses from normal lenses?
$$ M_{\rm L} \propto \frac{\theta_{\rm E}}{\pi_{\rm E}} $$
Figures from Sahu et al. (2022, left) and Wyrzykowski et al. (2016, right)
Image credit: Bill Saxton, NRAO/AUI/NSF
Typical BH events have
Animations credit to: B. Scott Gaudi (see also Dominik & Sahu 2000)
Photometric
Animations credit to: B. Scott Gaudi (see also Dominik & Sahu 2000)
Photometric
Astrometric (source frame)
Astrometric (lens frame)
\( \delta_{\rm max} (u=\sqrt{2}) = \frac{\sqrt{2}}{4} \theta_{\rm E} \approx 0.35 \theta_{\rm E} \)
(see also Lu+16, Kains+17)
(see also Lu+16, Kains+17)
Precise astrometry on
Constraints on
Long-timescale event, OGLE-2011-BLG-0462, was caused by a dark object, probably an isolated stellar-mass black hole, based on HST astrometric microlensing and ground-based photometry.
The key difference came from photometric microlensing signal (\(\pi_{\rm E}\)), not astrometric microlensing signal (\(\theta_{\rm E}\)).
Light curve plot from Sahu et al. (2022)
\( A_{\rm max}=372.62 \)
\( t_{\rm E}=231.56\) days
First HST observation
2'
8"
2"
WFC3 F606W & F814W filters.
Additional observations obtained in Lam et al.
F606W
F814W
Angular Einstein radius \( \theta_{\rm E} = 5.18 \pm 0.51 \) mas
F606W
F814W
Angular Einstein radius \( \theta_{\rm E} = 4.0 \pm 1.1 \) mas
Angular Einstein radius
\( \theta_{\rm E} = 5.18 \pm 0.51 \) mas (Sahu et al.)
\( \theta_{\rm E} = 4.0 \pm 1.1 \) mas (Lam et al.)
Figure from Sahu et al. (2022)
Microlensing parallax
\( \pi_{\rm E}=0.089 \pm0.014 \) (Sahu et al.)
\( \pi_{\rm E} = 0.13 \pm0.01 \) or \( 0.24 \pm 0.05\) (Lam et al.)
Sahu et al. | Lam et al. | |
Angular Einstein radius (mas) | 5.18+-0.51 | 4.0+-1.1 |
Microlensing parallax | 0.089+-0.014 | 0.13+-0.01 or 0.24+-0.05 |
Lens mass (M_sun) | 7.1+-1.3 | [1.6, 4.5] |
Lens distance (kpc) | 1.58+-0.18 | [0.9, 1.5] |
\( M_{\rm L} = 1.2 M_\odot \left( \frac{\theta_{\rm E}}{\rm mas} \right) \left( \frac{\pi_{\rm E}}{0.1} \right)^{-1} \)