Wei Zhu (祝伟)
司天课堂
2021-3-22
Paczynski (1986); Mao & Paczynski (1991)
\(t_{\rm E} \sim 30{\rm days} \left(\frac{M_{\rm L}}{M_\odot}\right)^{1/2} \)
\( t_q \sim 40{\rm min} \left(\frac{q}{10^{-6}}\right)^{1/2} \left( \frac{t_{\rm E}}{30 \rm days}\right) \)
背景恒星亮度
背景恒星
”透镜“星体
\( t_{\rm E} \)
\( t_q \)
Milky Way
(not to scale)
Halo
Magellanic Clouds
Sun
Bulge
Disk
Bohdan Paczynski
Halo microlensing
Bulge microlensing
Animations from B. Scott Gaudi
Transit (ground)
Transit (space)
Radial velocity
Microlensing
Imaging
Figure adapted from Zhu & Dong (2021)
Hot Jupiters
Cold Jupiters
Super Earths
Cold Neptunes
Transit (ground)
Transit (space)
Radial velocity
Microlensing
Imaging
Hot Jupiters
Cold Jupiters
Super Earths
Cold Neptunes
Figure from Zhu & Dong (2021)
行星系统外部区域(特别是1-10 AU)的质量和角动量占主导 \(\longrightarrow\) 冷行星的存在和分布情况对认识整个行星系统至关重要!
Mimimum mass extra-solar nebula
Mimimum mass solar nebula
Weidenschilling (1977); Hayashi (1981); Chiang & Laughlin (2013)
2 \(M_\oplus\)
>400 \(M_\oplus\)
银河系中心
1 deg
Credit to: KASI, Gould et al. (2020)
Figures from Suzuki et al. (2016)
(see also Gould et al. 2010, Cassan et al. 2012, Clanton & Gaudi 2014, Udalski et al. 2018, Jung et al. 2019)
臧伟呈
Yee, Zang, et al. (2021)
5 hr
Figure from Weicheng Zang
Preliminary Result
Zang et al. (in prep)
The occurrence rate is integrated to ~1planet/star.
Han et al. (2013), Beaulieu et al. (2016)
planet 2
planet 1
OB120026: a Sun-like host with a cold Jupiter & a cold Neptune
Animations from B. Scott Gaudi
Planetary signals (~days) vs. orbital period (~years).
OGLE-2006-BLG-109
Fabrycky & Murray-Clay (2010)
(see also Wang et al. 2018)
b
c
d
Marois et al. (2008)
planet 2
planet 1
Madsen & Zhu, 2019, ApJL, 878, 29
planet 2
planet 1
Hadden & Lithwick (2018)
Madsen & Zhu, 2019, ApJL, 878, 29
Pluto & Neptune
Eccentric orbits & in MMRs
Nearly circular orbits & out of MMRs
Mean-motion resonances
Madsen & Zhu, 2019, ApJL, 878, 29
MMR
non-MMR (probably)
Madsen & Zhu, 2019, ApJL, 878, 29
Lee & Peale (2002)
Evolution of GJ 876 system
MMR
non-MMR (probably)
Madsen & Zhu, 2019, ApJL, 878, 29
planet 2
planet 1
Sabrina Madsen
Figure from Weicheng Zang
Perhaps most planetary systems have multiple planets at a few AU.
Planet mass
Semi-major axis
0.1 AU
1 AU
10 AU
\(M_\oplus\)
\(M_{\rm Nep}\)
\(M_{\rm Sat}\)
\(13~M_{\rm J}\)
Cold Jupiter
\(P({\rm CJ})\approx10\%\)
Super Earth
\(P({\rm SE})\approx30\%\)
\(P({\rm SE}|{\rm CJ}) \approx90\%\)
\(P({\rm CN}|{\rm CJ}) \sim 100\%\)
Figure adapted from Zhu & Dong (2021)
>1 per yr
1 per 6 yr
The occurrence rate is integrated to ~1planet/star.
Microlensing toward the bulge:
White dwarf (WD): 17%
Neutron star (NS): 3%
Black hole (BH): ~1%
(see also Gould 2000)
How can we tell BH lenses from normal lenses?
Paczynski (1986); Mao & Paczynski (1991)
\(t_{\rm E} \sim 30{\rm days} \left(\frac{M_{\rm L}}{M_\odot}\right)^{1/2} \)
背景恒星亮度
背景恒星
”透镜“星体
\( t_{\rm E} \)
(see also Bennett+2002, Agol+2002)
OGLE-1999-BUL-32: \( t_{\rm E} = 640 \) days
\( t_{\rm E} = \frac{\theta_{\rm E}}{\mu_{\rm rel}} \approx f(M_{\rm L}, D_{\rm L}, \mu_{\rm rel}) \)
Figures from Sahu et al. (2022, left) and Wyrzykowski et al. (2016, right)
Image credit: Bill Saxton, NRAO/AUI/NSF
Typical BH events have
3 unknowns: \(M\), \(D\), \(\mu\)
2 observables: \(t_{\rm E}\), \(\pi_{\rm E}\)
Karolinski & Zhu (2020)
(See also Mao et al. 2002; Bennett et al. 2002)
(except for very rare cases)
Karolinski & Zhu (2020)
(see also Ma, Zhu, & Yang, 2022 submitted)
\( \pi_{\rm E}=0.089 \pm0.014 \) (Sahu et al.) or \(0.13-0.3\) (Lam et al.)
The occurrence rate is integrated to ~1planet/star.
CSST transit
CSST microlensing
3'
9"
Images from Pietrukowicz et al. (2019)
银河系中心
The occurrence rate is integrated to ~1planet/star.
Space-based microlensing, Disk microlensing