\displaystyle
\pi(x)
=
\sum_
{m\leqq\log_2 x}
\frac{\mu(m)}{m}
\biggl(
\mathrm{li}(x^{\frac{1}{m}})
-
\sum_\rho
\mathrm{li}
(x^{\frac{\rho}
{m}})
-
\log 2
+
\int_{x^{\frac{1}{m}}}^\infty
\frac{{dt}}{t({t^2}-1)\log t}
\biggr)
π(x)=m≦log2x∑mμ(m)(li(xm1)−ρ∑li(xmρ)−log2+∫xm1∞t(t2−1)logtdt)