素数の分布を話したい

~Gauss青年が見つけた法則とそれの発展~

2016.12.24

@ロマンティック数学ナイト

@Riemann_Zeta_F

\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s) = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \zeta(1-s)
πs2Γ(s2)ζ(s)=π1s2Γ(1s2)ζ(1s)\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s) = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \zeta(1-s)
\displaystyle \prod_{p;{\mathrm{prime}}}\frac{1}{1-p^{-s}}
p;prime11ps\displaystyle \prod_{p;{\mathrm{prime}}}\frac{1}{1-p^{-s}}
\zeta(2) = \frac{\pi^2}{6}
ζ(2)=π26\zeta(2) = \frac{\pi^2}{6}
\displaystyle \pi(x) = \sum_ {m\leqq\log_2 x} \frac{\mu(m)}{m} \biggl( \mathrm{li}(x^{\frac{1}{m}}) - \sum_\rho \mathrm{li} (x^{\frac{\rho} {m}}) - \log 2 + \int_{x^{\frac{1}{m}}}^\infty \frac{{dt}}{t({t^2}-1)\log t} \biggr)
π(x)=mlog2xμ(m)m(li(x1m)ρli(xρm)log2+x1mdtt(t21)logt)\displaystyle \pi(x) = \sum_ {m\leqq\log_2 x} \frac{\mu(m)}{m} \biggl( \mathrm{li}(x^{\frac{1}{m}}) - \sum_\rho \mathrm{li} (x^{\frac{\rho} {m}}) - \log 2 + \int_{x^{\frac{1}{m}}}^\infty \frac{{dt}}{t({t^2}-1)\log t} \biggr)
\displaystyle \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}
ζ(s)=k=11ks\displaystyle \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}
\displaystyle \zeta(3)= 1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + ...
ζ(3)=1+18+127+164+...\displaystyle \zeta(3)= 1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + ...
\displaystyle \neq \frac{p}{q}
pq\displaystyle \neq \frac{p}{q}
素数の分布を話したい ~Gauss青年が見つけた法則とそれの発展~ 2016.12.24 @ロマンティック数学ナイト @Riemann_Zeta_F \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s) = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \zeta(1-s) π − s 2 Γ ( s 2 ) ζ ( s ) = π − 1 − s 2 Γ ( 1 − s 2 ) ζ ( 1 − s ) \displaystyle \prod_{p;{\mathrm{prime}}}\frac{1}{1-p^{-s}} ∏ p ; p r i m e 1 1 − p − s \zeta(2) = \frac{\pi^2}{6} ζ ( 2 ) = π 2 6 \displaystyle \pi(x) = \sum_ {m\leqq\log_2 x} \frac{\mu(m)}{m} \biggl( \mathrm{li}(x^{\frac{1}{m}}) - \sum_\rho \mathrm{li} (x^{\frac{\rho} {m}}) - \log 2 + \int_{x^{\frac{1}{m}}}^\infty \frac{{dt}}{t({t^2}-1)\log t} \biggr) π ( x ) = ∑ m ≦ log ⁡ 2 x μ ( m ) m ( l i ( x 1 m ) − ∑ ρ l i ( x ρ m ) − log ⁡ 2 + ∫ x 1 m ∞ d t t ( t 2 − 1 ) log ⁡ t ) \displaystyle \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} ζ ( s ) = ∑ k = 1 ∞ 1 k s \displaystyle \zeta(3)= 1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + ... ζ ( 3 ) = 1 + 1 8 + 1 2 7 + 1 6 4 + . . . \displaystyle \neq \frac{p}{q} ≠ p q
Made with Slides.com