玉河数と Riemann zeta関数
2017.07.01.
@ロマンティック数学ナイト
@Riemann_Zeta_F
\displaystyle \zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^s}
ζ
(
s
)
=
∑
k
=
1
∞
1
k
s
\displaystyle \zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^s}
ζ
(
s
)
=
k
=
1
∑
∞
k
s
1
\displaystyle \mathrm{Tam} (\mathbb{G}) = \prod_{p: \mathrm{prime}} \frac{|\mathbb{G}(\mathbb{F}_{p})|}{p^{\mathrm{dim} \mathbb{G}}}
T
a
m
(
G
)
=
∏
p
:
p
r
i
m
e
∣
G
(
F
p
)
∣
p
d
i
m
G
\displaystyle \mathrm{Tam} (\mathbb{G}) = \prod_{p: \mathrm{prime}} \frac{|\mathbb{G}(\mathbb{F}_{p})|}{p^{\mathrm{dim} \mathbb{G}}}
T
a
m
(
G
)
=
p
:
p
r
i
m
e
∏
p
d
i
m
G
∣
G
(
F
p
)
∣
\displaystyle \tau (\mathbb{G}) = \int_{\mathbb{G} (\mathbb{Q})\backslash\mathbb{G}(\mathbb{A})} \omega_{\mathbb{A}}
τ
(
G
)
=
∫
G
(
Q
)
\
G
(
A
)
ω
A
\displaystyle \tau (\mathbb{G}) = \int_{\mathbb{G} (\mathbb{Q})\backslash\mathbb{G}(\mathbb{A})} \omega_{\mathbb{A}}
τ
(
G
)
=
∫
G
(
Q
)
\
G
(
A
)
ω
A
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (\mathrm{E})}{(\mathrm{log}~t)^{r}}
lim
t
→
∞
T
a
m
t
(
E
)
(
l
o
g
t
)
r
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (\mathrm{E})}{(\mathrm{log}~t)^{r}}
t
→
∞
lim
(
l
o
g
t
)
r
T
a
m
t
(
E
)
\displaystyle
\displaystyle
\displaystyle \zeta_{\mathbb{G}/\mathbb{F}_{1}} (s) = \lim_{p \to 1} \zeta_{\mathbb{G}/{\mathbb{F}_p}} (s)
ζ
G
/
F
1
(
s
)
=
lim
p
→
1
ζ
G
/
F
p
(
s
)
\displaystyle \zeta_{\mathbb{G}/\mathbb{F}_{1}} (s) = \lim_{p \to 1} \zeta_{\mathbb{G}/{\mathbb{F}_p}} (s)
ζ
G
/
F
1
(
s
)
=
p
→
1
lim
ζ
G
/
F
p
(
s
)
\displaystyle \mathrm{ord}_{s = 1} L(s, E/\mathbb{Q}) = \mathrm{rank} E(\mathbb{Q})
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
\displaystyle \mathrm{ord}_{s = 1} L(s, E/\mathbb{Q}) = \mathrm{rank} E(\mathbb{Q})
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
\displaystyle \rho : \mathrm{Gal} ( \overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow GL_{n} (K)
ρ
:
G
a
l
(
Q
‾
/
Q
)
⟶
G
L
n
(
K
)
\displaystyle \rho : \mathrm{Gal} ( \overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow GL_{n} (K)
ρ
:
G
a
l
(
Q
/
Q
)
⟶
G
L
n
(
K
)
自己紹介.
・
\displaystyle 14
1
4
\displaystyle 14
1
4
歳,中学
\displaystyle 2
2
\displaystyle 2
2
年生.
・昨年の
\displaystyle 7
7
\displaystyle 7
7
月にある
\displaystyle 2
2
\displaystyle 2
2
人の日曜数学者のブログを
見て,数学に興味を持つ.
・好きな四字熟語は虚数乗法,好きな素数は
と
\displaystyle 37
3
7
\displaystyle 37
3
7
\displaystyle 691
6
9
1
\displaystyle 691
6
9
1
と
\displaystyle 1229
1
2
2
9
\displaystyle 1229
1
2
2
9
\displaystyle 7758337633
7
7
5
8
3
3
7
6
3
3
\displaystyle 7758337633
7
7
5
8
3
3
7
6
3
3
と
他多数.
・グレブナー基底にはポン酢派.
素数は無数に存在する.
\displaystyle \mathrm{Theorem. ~~~ (Euclid, 3 B.C.)}
T
h
e
o
r
e
m
.
(
E
u
c
l
i
d
,
3
B
.
C
.
)
\displaystyle \mathrm{Theorem. ~~~ (Euclid, 3 B.C.)}
T
h
e
o
r
e
m
.
(
E
u
c
l
i
d
,
3
B
.
C
.
)
\displaystyle
\displaystyle
Adele
\displaystyle
\displaystyle
Adele
素数を定義通りに列挙する:
\displaystyle 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \cdots
2
,
3
,
5
,
7
,
1
1
,
1
3
,
1
7
,
2
3
,
2
9
,
3
1
,
3
7
,
⋯
\displaystyle 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \cdots
2
,
3
,
5
,
7
,
1
1
,
1
3
,
1
7
,
2
3
,
2
9
,
3
1
,
3
7
,
⋯
というように無限に続く.
\displaystyle
\displaystyle
Adele
ここで記号
\displaystyle \infty
∞
\displaystyle \infty
∞
を導入すれば,素数は
\displaystyle 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, \cdots , \infty
2
,
3
,
5
,
7
,
1
1
,
1
3
,
1
7
,
2
3
,
2
9
,
3
1
,
⋯
,
∞
\displaystyle 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, \cdots , \infty
2
,
3
,
5
,
7
,
1
1
,
1
3
,
1
7
,
2
3
,
2
9
,
3
1
,
⋯
,
∞
とストップする.
\displaystyle \infty
∞
\displaystyle \infty
∞
を無限素点とよび,通常の
\displaystyle p
p
\displaystyle p
p
を有限素点とよぶ.
素点を表す文字として
\displaystyle \nu
ν
\displaystyle \nu
ν
を用いる.
\displaystyle \hat{}
^
\displaystyle \hat{}
^
\displaystyle \mathbb{P}
P
\displaystyle \mathbb{P}
P
\displaystyle = \mathbb{P}
=
P
\displaystyle = \mathbb{P}
=
P
\displaystyle \cup
∪
\displaystyle \cup
∪
\displaystyle \infty
∞
\displaystyle \infty
∞
素点全体の集合を
\displaystyle \hat{}
^
\displaystyle \hat{}
^
\displaystyle \mathbb{P}
P
\displaystyle \mathbb{P}
P
とすると,
と書ける.
\displaystyle
\displaystyle
Adele
有理数体
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
の局所化として各素点
\displaystyle \nu \in
ν
∈
\displaystyle \nu \in
ν
∈
\displaystyle \mathbb{P}
P
\displaystyle \mathbb{P}
P
\displaystyle \hat{}
^
\displaystyle \hat{}
^
に対して局所体
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
が,
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
の絶対値
\displaystyle {\left|~~\right|}_{\nu}
∣
∣
ν
\displaystyle {\left|~~\right|}_{\nu}
∣
∣
ν
\displaystyle \nu = \infty
ν
=
∞
\displaystyle \nu = \infty
ν
=
∞
の定める距離の完備化として得ら
れるわけである.
i.e.
のときは
\displaystyle {\left| a \right|}_{\infty} ~~~~ {\left | a \right|}.
∣
a
∣
∞
∣
a
∣
.
\displaystyle {\left| a \right|}_{\infty} ~~~~ {\left | a \right|}.
∣
a
∣
∞
∣
a
∣
.
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle =
=
\displaystyle =
=
\displaystyle \nu = p
ν
=
p
\displaystyle \nu = p
ν
=
p
のときは
\displaystyle {\left| a \right|}_{p} ~~~~ p^{-\mathrm{ord}_{p} (a)}.
∣
a
∣
p
p
−
o
r
d
p
(
a
)
.
\displaystyle {\left| a \right|}_{p} ~~~~ p^{-\mathrm{ord}_{p} (a)}.
∣
a
∣
p
p
−
o
r
d
p
(
a
)
.
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle =
=
\displaystyle =
=
\displaystyle {\left| 0 \right|}_{p} ~~~~ 0,
∣
0
∣
p
0
,
\displaystyle {\left| 0 \right|}_{p} ~~~~ 0,
∣
0
∣
p
0
,
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle =
=
\displaystyle =
=
\displaystyle
\displaystyle
Adele
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle {\left| a \right|}_{\nu} = 0 \Longleftrightarrow a = 0
∣
a
∣
ν
=
0
⟺
a
=
0
\displaystyle {\left| a \right|}_{\nu} = 0 \Longleftrightarrow a = 0
∣
a
∣
ν
=
0
⟺
a
=
0
\displaystyle {\left| ab \right|}_{\nu} = {\left| a \right|}_{\nu} {\left| b \right|}_{\nu}
∣
a
b
∣
ν
=
∣
a
∣
ν
∣
b
∣
ν
\displaystyle {\left| ab \right|}_{\nu} = {\left| a \right|}_{\nu} {\left| b \right|}_{\nu}
∣
a
b
∣
ν
=
∣
a
∣
ν
∣
b
∣
ν
\displaystyle {\left| a + b \right|}_{\nu} \leqq {\left| a \right|}_{\nu} + {\left| b \right|}_{\nu}
∣
a
+
b
∣
ν
≦
∣
a
∣
ν
+
∣
b
∣
ν
\displaystyle {\left| a + b \right|}_{\nu} \leqq {\left| a \right|}_{\nu} + {\left| b \right|}_{\nu}
∣
a
+
b
∣
ν
≦
∣
a
∣
ν
+
∣
b
∣
ν
\displaystyle \mathrm{Theorem.} ~~~~ (\mathrm{Strong ~ Triangle ~ Inequality})
T
h
e
o
r
e
m
.
(
S
t
r
o
n
g
T
r
i
a
n
g
l
e
I
n
e
q
u
a
l
i
t
y
)
\displaystyle \mathrm{Theorem.} ~~~~ (\mathrm{Strong ~ Triangle ~ Inequality})
T
h
e
o
r
e
m
.
(
S
t
r
o
n
g
T
r
i
a
n
g
l
e
I
n
e
q
u
a
l
i
t
y
)
\displaystyle {\left| a + b \right|}_{p} \leqq \mathrm{max} ({\left| a \right|}_{p}, ~ {\left| b \right|}_{p})
∣
a
+
b
∣
p
≦
m
a
x
(
∣
a
∣
p
,
∣
b
∣
p
)
\displaystyle {\left| a + b \right|}_{p} \leqq \mathrm{max} ({\left| a \right|}_{p}, ~ {\left| b \right|}_{p})
∣
a
+
b
∣
p
≦
m
a
x
(
∣
a
∣
p
,
∣
b
∣
p
)
\displaystyle
\displaystyle
Adele
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
の
そこで,
点
\displaystyle 2
2
\displaystyle 2
2
\displaystyle a, b
a
,
b
\displaystyle a, b
a
,
b
の距離
\displaystyle d_{\nu} (a, b)
d
ν
(
a
,
b
)
\displaystyle d_{\nu} (a, b)
d
ν
(
a
,
b
)
を
\displaystyle d_{\nu} (a, b) = {\left| a - b \right|}_{\nu}
d
ν
(
a
,
b
)
=
∣
a
−
b
∣
ν
\displaystyle d_{\nu} (a, b) = {\left| a - b \right|}_{\nu}
d
ν
(
a
,
b
)
=
∣
a
−
b
∣
ν
と定めると
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
は距離空間となり,
\displaystyle d_{\nu}
d
ν
\displaystyle d_{\nu}
d
ν
による
の完備化と
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
して完備な距離空間
を得る.
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
は体となり,
\displaystyle a = \nu - \lim_{n \to \infty} a_{n} ~~~~~ (a_{n} \in \mathbb{Q})
a
=
ν
−
lim
n
→
∞
a
n
(
a
n
∈
Q
)
\displaystyle a = \nu - \lim_{n \to \infty} a_{n} ~~~~~ (a_{n} \in \mathbb{Q})
a
=
ν
−
n
→
∞
lim
a
n
(
a
n
∈
Q
)
のとき
\displaystyle {\left| a \right|}_{\nu} = \lim_{n \to \infty} {\left| a_{n} \right|}_{\nu}
∣
a
∣
ν
=
lim
n
→
∞
∣
a
n
∣
ν
\displaystyle {\left| a \right|}_{\nu} = \lim_{n \to \infty} {\left| a_{n} \right|}_{\nu}
∣
a
∣
ν
=
n
→
∞
lim
∣
a
n
∣
ν
により
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
に絶対値
\displaystyle {\left| ~~ \right|}_{\nu}
∣
∣
ν
\displaystyle {\left| ~~ \right|}_{\nu}
∣
∣
ν
が拡張される.
\displaystyle
\displaystyle
Adele
\displaystyle \mathbb{Q}_{\nu}
Q
ν
\displaystyle \mathbb{Q}_{\nu}
Q
ν
このようにして,各
\displaystyle \nu \in
ν
∈
\displaystyle \nu \in
ν
∈
\displaystyle \hat{}
^
\displaystyle \hat{}
^
\displaystyle \mathbb{P}
P
\displaystyle \mathbb{P}
P
に対し局所体
が得られた.
\displaystyle \nu = \infty
ν
=
∞
\displaystyle \nu = \infty
ν
=
∞
のとき
\displaystyle \mathbb{Q}_{\nu} = \mathbb{R}.
Q
ν
=
R
.
\displaystyle \mathbb{Q}_{\nu} = \mathbb{R}.
Q
ν
=
R
.
\displaystyle \nu = p
ν
=
p
\displaystyle \nu = p
ν
=
p
のとき
\displaystyle \mathbb{Q}_{p} \cdots p
Q
p
⋯
p
\displaystyle \mathbb{Q}_{p} \cdots p
Q
p
⋯
p
- 進数体
\displaystyle .
.
\displaystyle .
.
\displaystyle \mathbb{Q}_{p}
Q
p
\displaystyle \mathbb{Q}_{p}
Q
p
の部分集合
\displaystyle \mathbb{Z}_{p} = \{a \in \mathbb{Q}_{p} ~ \mid ~ {\left| a \right|}_{p} \leqq 1\}
Z
p
=
{
a
∈
Q
p
∣
∣
a
∣
p
≦
1
}
\displaystyle \mathbb{Z}_{p} = \{a \in \mathbb{Q}_{p} ~ \mid ~ {\left| a \right|}_{p} \leqq 1\}
Z
p
=
{
a
∈
Q
p
∣
∣
a
∣
p
≦
1
}
は
の部分環
\displaystyle \mathbb{Q}_{p}
Q
p
\displaystyle \mathbb{Q}_{p}
Q
p
(
\displaystyle \mathbb{Q}_{p}
Q
p
\displaystyle \mathbb{Q}_{p}
Q
p
の加法について閉じている
)
.
\displaystyle
\displaystyle
Adele
直積
\displaystyle \prod_{\nu \in \hat{\mathbb{P}} } \mathbb{Q}_\nu
∏
ν
∈
P
^
Q
ν
\displaystyle \prod_{\nu \in \hat{\mathbb{P}} } \mathbb{Q}_\nu
ν
∈
P
^
∏
Q
ν
の要素
\displaystyle a = (a_\nu)
a
=
(
a
ν
)
\displaystyle a = (a_\nu)
a
=
(
a
ν
)
に対して,
\displaystyle a = (a_{\nu})
a
=
(
a
ν
)
\displaystyle a = (a_{\nu})
a
=
(
a
ν
)
\displaystyle \Longleftrightarrow
⟺
\displaystyle \Longleftrightarrow
⟺
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
有限個の
\displaystyle p
p
\displaystyle p
p
を除いて
\displaystyle a_{p} \in \mathbb{Z}_{p}
a
p
∈
Z
p
\displaystyle a_{p} \in \mathbb{Z}_{p}
a
p
∈
Z
p
がAdele
とし,Adeleの全体を
\displaystyle \mathbb{A}
A
\displaystyle \mathbb{A}
A
と書く.
有理数体
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
は対角写像
\displaystyle a \longmapsto (a, ~ a, ~ \cdots, ~a, \cdots), ~ a \in \mathbb{Q}
a
⟼
(
a
,
a
,
⋯
,
a
,
⋯
)
,
a
∈
Q
\displaystyle a \longmapsto (a, ~ a, ~ \cdots, ~a, \cdots), ~ a \in \mathbb{Q}
a
⟼
(
a
,
a
,
⋯
,
a
,
⋯
)
,
a
∈
Q
により
\displaystyle \mathbb{A}
A
\displaystyle \mathbb{A}
A
の中の離散的な部分加群とみなされる.
商群
\displaystyle \mathbb{A} \backslash \mathbb{Q}
A
\
Q
\displaystyle \mathbb{A} \backslash \mathbb{Q}
A
\
Q
は
Compact.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle
\displaystyle
Adele
\displaystyle \mathbb{A}
A
\displaystyle \mathbb{A}
A
\displaystyle \mathbb{Q}_{2} ~~~ \mathbb{Q}_{3} ~~~ \mathbb{Q}_{5} ~~~ \mathbb{Q}_{7} ~~~ \mathbb{Q}_{11} ~ \cdots \cdots ~ \mathbb{Q}_{\infty}
Q
2
Q
3
Q
5
Q
7
Q
1
1
⋯
⋯
Q
∞
\displaystyle \mathbb{Q}_{2} ~~~ \mathbb{Q}_{3} ~~~ \mathbb{Q}_{5} ~~~ \mathbb{Q}_{7} ~~~ \mathbb{Q}_{11} ~ \cdots \cdots ~ \mathbb{Q}_{\infty}
Q
2
Q
3
Q
5
Q
7
Q
1
1
⋯
⋯
Q
∞
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Z}
Z
\displaystyle \mathbb{Z}
Z
Adele ring
Local field
Rational field
Rational integer ring
\displaystyle
\displaystyle
Riemann zeta関数
\displaystyle
\displaystyle
Riemann zeta関数
\displaystyle \zeta (s)
ζ
(
s
)
\displaystyle \zeta (s)
ζ
(
s
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \sum_{k = 1}^{\infty} \frac{1}{k^s}
∑
k
=
1
∞
1
k
s
\displaystyle \sum_{k = 1}^{\infty} \frac{1}{k^s}
k
=
1
∑
∞
k
s
1
\displaystyle \mathrm{Re} (s) > 1.
R
e
(
s
)
>
1
.
\displaystyle \mathrm{Re} (s) > 1.
R
e
(
s
)
>
1
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Basel ~ problem)}
T
h
e
o
r
e
m
.
(
B
a
s
e
l
p
r
o
b
l
e
m
)
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Basel ~ problem)}
T
h
e
o
r
e
m
.
(
B
a
s
e
l
p
r
o
b
l
e
m
)
\displaystyle \zeta (2) = \frac{\pi^{2}}{6}.
ζ
(
2
)
=
π
2
6
.
\displaystyle \zeta (2) = \frac{\pi^{2}}{6}.
ζ
(
2
)
=
6
π
2
.
\displaystyle
\displaystyle
Riemann zeta関数
\displaystyle \zeta (s) = \prod_{p \mathrm{: prime}} \frac{1}{1 - \frac{1}{p^s}}.
ζ
(
s
)
=
∏
p
:
p
r
i
m
e
1
1
−
1
p
s
.
\displaystyle \zeta (s) = \prod_{p \mathrm{: prime}} \frac{1}{1 - \frac{1}{p^s}}.
ζ
(
s
)
=
p
:
p
r
i
m
e
∏
1
−
p
s
1
1
.
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Euler ~ product)}
T
h
e
o
r
e
m
.
(
E
u
l
e
r
p
r
o
d
u
c
t
)
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Euler ~ product)}
T
h
e
o
r
e
m
.
(
E
u
l
e
r
p
r
o
d
u
c
t
)
\displaystyle \mathrm{Example.}
E
x
a
m
p
l
e
.
\displaystyle \mathrm{Example.}
E
x
a
m
p
l
e
.
\displaystyle \zeta (2) = \prod_{p \mathrm{: prime}} \frac{1}{1 - \frac{1}{p^2}} = \frac{\pi^{2}}{6}.
ζ
(
2
)
=
∏
p
:
p
r
i
m
e
1
1
−
1
p
2
=
π
2
6
.
\displaystyle \zeta (2) = \prod_{p \mathrm{: prime}} \frac{1}{1 - \frac{1}{p^2}} = \frac{\pi^{2}}{6}.
ζ
(
2
)
=
p
:
p
r
i
m
e
∏
1
−
p
2
1
1
=
6
π
2
.
\displaystyle
\displaystyle
Riemann zeta関数
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Functional ~ equation)}
T
h
e
o
r
e
m
.
(
F
u
n
c
t
i
o
n
a
l
e
q
u
a
t
i
o
n
)
\displaystyle \mathrm{Theorem.} ~~~ (\mathrm{Functional ~ equation)}
T
h
e
o
r
e
m
.
(
F
u
n
c
t
i
o
n
a
l
e
q
u
a
t
i
o
n
)
\displaystyle \zeta (s) \pi^{- \frac{s}{2}} \Gamma {\left( \frac{s}{2} \right)} = \zeta (1 - s) \pi^{- \frac{1 - s}{2}} \Gamma {\left( \frac{1 - s}{2} \right)}.
ζ
(
s
)
π
−
s
2
Γ
(
s
2
)
=
ζ
(
1
−
s
)
π
−
1
−
s
2
Γ
(
1
−
s
2
)
.
\displaystyle \zeta (s) \pi^{- \frac{s}{2}} \Gamma {\left( \frac{s}{2} \right)} = \zeta (1 - s) \pi^{- \frac{1 - s}{2}} \Gamma {\left( \frac{1 - s}{2} \right)}.
ζ
(
s
)
π
−
2
s
Γ
(
2
s
)
=
ζ
(
1
−
s
)
π
−
2
1
−
s
Γ
(
2
1
−
s
)
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \prod_{n = 1}^{\infty} ~ n = \sqrt{2\pi}.
∏
n
=
1
∞
n
=
2
π
.
\displaystyle \prod_{n = 1}^{\infty} ~ n = \sqrt{2\pi}.
n
=
1
∏
∞
n
=
√
2
π
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \zeta (-1) = \sum_{k = 1}^{\infty} ~ k = -\frac{1}{12}.
ζ
(
−
1
)
=
∑
k
=
1
∞
k
=
−
1
1
2
.
\displaystyle \zeta (-1) = \sum_{k = 1}^{\infty} ~ k = -\frac{1}{12}.
ζ
(
−
1
)
=
k
=
1
∑
∞
k
=
−
1
2
1
.
\displaystyle
\displaystyle
Riemann zeta関数
\displaystyle \zeta (s) = 2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma (1 - s) \zeta (1 - s),
ζ
(
s
)
=
2
s
π
s
−
1
sin
π
s
2
Γ
(
1
−
s
)
ζ
(
1
−
s
)
,
\displaystyle \zeta (s) = 2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma (1 - s) \zeta (1 - s),
ζ
(
s
)
=
2
s
π
s
−
1
sin
2
π
s
Γ
(
1
−
s
)
ζ
(
1
−
s
)
,
\displaystyle \zeta (1 - s) = 2^{1 - s} \pi^{-s} \cos \frac{\pi s}{2} \Gamma (s) \zeta (s).
ζ
(
1
−
s
)
=
2
1
−
s
π
−
s
cos
π
s
2
Γ
(
s
)
ζ
(
s
)
.
\displaystyle \zeta (1 - s) = 2^{1 - s} \pi^{-s} \cos \frac{\pi s}{2} \Gamma (s) \zeta (s).
ζ
(
1
−
s
)
=
2
1
−
s
π
−
s
cos
2
π
s
Γ
(
s
)
ζ
(
s
)
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle The ~ real ~ part ~ of ~ every ~ non ~~~ trivial ~ zero ~ of ~ the
T
h
e
r
e
a
l
p
a
r
t
o
f
e
v
e
r
y
n
o
n
t
r
i
v
i
a
l
z
e
r
o
o
f
t
h
e
\displaystyle The ~ real ~ part ~ of ~ every ~ non ~~~ trivial ~ zero ~ of ~ the
T
h
e
r
e
a
l
p
a
r
t
o
f
e
v
e
r
y
n
o
n
t
r
i
v
i
a
l
z
e
r
o
o
f
t
h
e
\displaystyle Riemann ~ zeta ~ function ~ is ~ \frac{1}{2}.
R
i
e
m
a
n
n
z
e
t
a
f
u
n
c
t
i
o
n
i
s
1
2
.
\displaystyle Riemann ~ zeta ~ function ~ is ~ \frac{1}{2}.
R
i
e
m
a
n
n
z
e
t
a
f
u
n
c
t
i
o
n
i
s
2
1
.
\displaystyle -
−
\displaystyle -
−
\displaystyle
\displaystyle
Riemann zeta関数
素点に関する zeta関数 place zeta関数
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \zeta_{\nu} (s)
ζ
ν
(
s
)
\displaystyle \zeta_{\nu} (s)
ζ
ν
(
s
)
を定義する.
\displaystyle \zeta_\nu(s)
ζ
ν
(
s
)
\displaystyle \zeta_\nu(s)
ζ
ν
(
s
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \Biggl\{
{
\displaystyle \Biggl\{
{
\displaystyle \frac{1}{1 - \frac{1}{p^s}} ~ \cdots \cdots ~ \mathrm{if} ~ p ~ \mathrm{is ~ prime ~ number}
1
1
−
1
p
s
⋯
⋯
i
f
p
i
s
p
r
i
m
e
n
u
m
b
e
r
\displaystyle \frac{1}{1 - \frac{1}{p^s}} ~ \cdots \cdots ~ \mathrm{if} ~ p ~ \mathrm{is ~ prime ~ number}
1
−
p
s
1
1
⋯
⋯
i
f
p
i
s
p
r
i
m
e
n
u
m
b
e
r
\displaystyle \pi^{-\frac{s}{2}} \Gamma \left(\frac{s}{2}\right) ~ \cdots ~ \mathrm{if} ~ p = \infty.
π
−
s
2
Γ
(
s
2
)
⋯
i
f
p
=
∞
.
\displaystyle \pi^{-\frac{s}{2}} \Gamma \left(\frac{s}{2}\right) ~ \cdots ~ \mathrm{if} ~ p = \infty.
π
−
2
s
Γ
(
2
s
)
⋯
i
f
p
=
∞
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \hat{\zeta} (s)
ζ
^
(
s
)
\displaystyle \hat{\zeta} (s)
ζ
^
(
s
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{\nu}~ \zeta_{\nu}(s).
∏
ν
ζ
ν
(
s
)
.
\displaystyle \prod_{\nu}~ \zeta_{\nu}(s).
ν
∏
ζ
ν
(
s
)
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \hat{\zeta}(s) = \hat{\zeta}(1 - s).
ζ
^
(
s
)
=
ζ
^
(
1
−
s
)
.
\displaystyle \hat{\zeta}(s) = \hat{\zeta}(1 - s).
ζ
^
(
s
)
=
ζ
^
(
1
−
s
)
.
\displaystyle
\displaystyle
玉河数
\displaystyle
\displaystyle
玉河数
\displaystyle \mathbb{Q} \longrightarrow \mathbb{Q}_{\nu} \longrightarrow \mathbb{A}
Q
⟶
Q
ν
⟶
A
\displaystyle \mathbb{Q} \longrightarrow \mathbb{Q}_{\nu} \longrightarrow \mathbb{A}
Q
⟶
Q
ν
⟶
A
このプロセスは
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
で定義された代数多様体
\displaystyle X
X
\displaystyle X
X
に適用できる:
零点をとるような体や環を変化させることで,
\displaystyle X(\mathbb{Q}) \longrightarrow X(\mathbb{Q}_{\nu}) \longrightarrow X(\mathbb{A})
X
(
Q
)
⟶
X
(
Q
ν
)
⟶
X
(
A
)
\displaystyle X(\mathbb{Q}) \longrightarrow X(\mathbb{Q}_{\nu}) \longrightarrow X(\mathbb{A})
X
(
Q
)
⟶
X
(
Q
ν
)
⟶
X
(
A
)
というプロセスも考えることができる.
このプロセスを
\displaystyle X
X
\displaystyle X
X
の
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
(
に関する
)
Adele化とよぶ.
\displaystyle
\displaystyle
玉河数
\displaystyle G(\mathbb{Q}) = \left\{x = \left( \begin{array}{ccc} t_{1} & t_{2} \\ t_{3} & t_{4} \end{array} \right) ~ \middle| ~ \mathrm{det} ~ x = 1 \right\}
G
(
Q
)
=
{
x
=
(
t
1
t
2
t
3
t
4
)
undefined
d
e
t
x
=
1
}
\displaystyle G(\mathbb{Q}) = \left\{x = \left( \begin{array}{ccc} t_{1} & t_{2} \\ t_{3} & t_{4} \end{array} \right) ~ \middle| ~ \mathrm{det} ~ x = 1 \right\}
G
(
Q
)
=
{
x
=
(
t
1
t
3
t
2
t
4
)
∣
∣
∣
∣
d
e
t
x
=
1
}
ただし
\displaystyle t_{i} \in \mathbb{Q}, 1 \leqq i \leqq 4
t
i
∈
Q
,
1
≦
i
≦
4
\displaystyle t_{i} \in \mathbb{Q}, 1 \leqq i \leqq 4
t
i
∈
Q
,
1
≦
i
≦
4
\displaystyle \mathbb{G}\left(\mathbb{Q}\right)
G
(
Q
)
\displaystyle \mathbb{G}\left(\mathbb{Q}\right)
G
(
Q
)
\displaystyle \mathbb{G}\left(\mathbb{A}\right)
G
(
A
)
\displaystyle \mathbb{G}\left(\mathbb{A}\right)
G
(
A
)
\displaystyle \mathbb{G}\left(\mathbb{Z}\right)
G
(
Z
)
\displaystyle \mathbb{G}\left(\mathbb{Z}\right)
G
(
Z
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{2}\right)
G
(
Q
2
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{2}\right)
G
(
Q
2
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{3}\right)
G
(
Q
3
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{3}\right)
G
(
Q
3
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{5}\right)
G
(
Q
5
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{5}\right)
G
(
Q
5
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{\infty}\right)
G
(
Q
∞
)
\displaystyle \mathbb{G}\left(\mathbb{Q}_{\infty}\right)
G
(
Q
∞
)
\displaystyle \cdots \cdots
⋯
⋯
\displaystyle \cdots \cdots
⋯
⋯
Modular group
Group of rational points
Local group
Adele group
\displaystyle
\displaystyle
玉河数
\displaystyle \mathbb{G} = \mathbb{SL}_{2}
G
=
S
L
2
\displaystyle \mathbb{G} = \mathbb{SL}_{2}
G
=
S
L
2
は
\displaystyle 3
3
\displaystyle 3
3
次元だから,
\displaystyle \omega
ω
\displaystyle \omega
ω
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \frac{dt_{1} \land dt_{2} \land dt_{3}}{t_1}
d
t
1
∧
d
t
2
∧
d
t
3
t
1
\displaystyle \frac{dt_{1} \land dt_{2} \land dt_{3}}{t_1}
t
1
d
t
1
∧
d
t
2
∧
d
t
3
という微分形式(体積要素)を考えると,
\displaystyle \mathbb{G}
G
\displaystyle \mathbb{G}
G
は
\displaystyle \omega
ω
\displaystyle \omega
ω
の
左不変な微分形式になる.
\displaystyle \omega_{\mathbb{A}}
ω
A
\displaystyle \omega_{\mathbb{A}}
ω
A
を
\displaystyle \omega
ω
\displaystyle \omega
ω
が
\displaystyle \mathbb{G}(\mathbb{A})
G
(
A
)
\displaystyle \mathbb{G}(\mathbb{A})
G
(
A
)
に定める
Haar測度としたとき
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \tau(\mathbb{G})
τ
(
G
)
\displaystyle \tau(\mathbb{G})
τ
(
G
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \int_{\mathbb{G}(\mathbb{Q}) \backslash \mathbb{G}(\mathbb{A})} \omega_{\mathbb{A}}
∫
G
(
Q
)
\
G
(
A
)
ω
A
\displaystyle \int_{\mathbb{G}(\mathbb{Q}) \backslash \mathbb{G}(\mathbb{A})} \omega_{\mathbb{A}}
∫
G
(
Q
)
\
G
(
A
)
ω
A
が
\displaystyle \mathbb{G}
G
\displaystyle \mathbb{G}
G
の玉河数.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \tau_{0}(\mathbb{G})
τ
0
(
G
)
\displaystyle \tau_{0}(\mathbb{G})
τ
0
(
G
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p:\mathrm{prime}} \int_{\mathbb{G}(\mathbb{Z}_{p})} \omega_{p},
∏
p
:
p
r
i
m
e
∫
G
(
Z
p
)
ω
p
,
\displaystyle \prod_{p:\mathrm{prime}} \int_{\mathbb{G}(\mathbb{Z}_{p})} \omega_{p},
p
:
p
r
i
m
e
∏
∫
G
(
Z
p
)
ω
p
,
\displaystyle \tau_{\infty}(\mathbb{G})
τ
∞
(
G
)
\displaystyle \tau_{\infty}(\mathbb{G})
τ
∞
(
G
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \int_{\mathbb{G}(\mathbb{Z}) \backslash \mathbb{G}(\mathbb{R})} \omega_{\infty}.
∫
G
(
Z
)
\
G
(
R
)
ω
∞
.
\displaystyle \int_{\mathbb{G}(\mathbb{Z}) \backslash \mathbb{G}(\mathbb{R})} \omega_{\infty}.
∫
G
(
Z
)
\
G
(
R
)
ω
∞
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
The ~ Tamagawa ~ number ~ ~~~~~~~~ ~ of ~ a ~ simply ~ con-
T
h
e
T
a
m
a
g
a
w
a
n
u
m
b
e
r
o
f
a
s
i
m
p
l
y
c
o
n
−
The ~ Tamagawa ~ number ~ ~~~~~~~~ ~ of ~ a ~ simply ~ con-
T
h
e
T
a
m
a
g
a
w
a
n
u
m
b
e
r
o
f
a
s
i
m
p
l
y
c
o
n
−
\displaystyle \tau(\mathbb{G})
τ
(
G
)
\displaystyle \tau(\mathbb{G})
τ
(
G
)
nected ~ simple ~ algebraic ~ group ~ defined ~ over ~ a
n
e
c
t
e
d
s
i
m
p
l
e
a
l
g
e
b
r
a
i
c
g
r
o
u
p
d
e
f
i
n
e
d
o
v
e
r
a
nected ~ simple ~ algebraic ~ group ~ defined ~ over ~ a
n
e
c
t
e
d
s
i
m
p
l
e
a
l
g
e
b
r
a
i
c
g
r
o
u
p
d
e
f
i
n
e
d
o
v
e
r
a
number ~ field ~ is ~~~.
n
u
m
b
e
r
f
i
e
l
d
i
s
.
number ~ field ~ is ~~~.
n
u
m
b
e
r
f
i
e
l
d
i
s
.
\displaystyle 1
1
\displaystyle 1
1
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Tam}(\mathbb{G})
T
a
m
(
G
)
\displaystyle \mathrm{Tam}(\mathbb{G})
T
a
m
(
G
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p:\mathrm{prime}} \frac{\left|\mathbb{G}(\mathbb{F}_{p})\right|}{p^{\mathrm{dim} ~ \mathbb{G}}},
∏
p
:
p
r
i
m
e
∣
G
(
F
p
)
∣
p
d
i
m
G
,
\displaystyle \prod_{p:\mathrm{prime}} \frac{\left|\mathbb{G}(\mathbb{F}_{p})\right|}{p^{\mathrm{dim} ~ \mathbb{G}}},
p
:
p
r
i
m
e
∏
p
d
i
m
G
∣
G
(
F
p
)
∣
,
\displaystyle \mathrm{Tam}(X)
T
a
m
(
X
)
\displaystyle \mathrm{Tam}(X)
T
a
m
(
X
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p:\mathrm{prime}} \frac{\left|X(\mathbb{F}_{p})\right|}{p^{\mathrm{dim} ~ X}}.
∏
p
:
p
r
i
m
e
∣
X
(
F
p
)
∣
p
d
i
m
X
.
\displaystyle \prod_{p:\mathrm{prime}} \frac{\left|X(\mathbb{F}_{p})\right|}{p^{\mathrm{dim} ~ X}}.
p
:
p
r
i
m
e
∏
p
d
i
m
X
∣
X
(
F
p
)
∣
.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Tam} (\mathbb{SL}_{2}) = \frac{1}{\zeta (2)} = \frac{6}{\pi^{2}}.
T
a
m
(
S
L
2
)
=
1
ζ
(
2
)
=
6
π
2
.
\displaystyle \mathrm{Tam} (\mathbb{SL}_{2}) = \frac{1}{\zeta (2)} = \frac{6}{\pi^{2}}.
T
a
m
(
S
L
2
)
=
ζ
(
2
)
1
=
π
2
6
.
\displaystyle \tau(\mathbb{G}) = \int_{\mathbb{G}(\mathbb{Z}) \backslash \mathbb{G}(\mathbb{A})} \omega_{\infty} \times \prod_{p:\mathrm{prime}} \int_{\mathbb{G}(\mathbb{Z}_{p})} \omega_{p}
τ
(
G
)
=
∫
G
(
Z
)
\
G
(
A
)
ω
∞
×
∏
p
:
p
r
i
m
e
∫
G
(
Z
p
)
ω
p
\displaystyle \tau(\mathbb{G}) = \int_{\mathbb{G}(\mathbb{Z}) \backslash \mathbb{G}(\mathbb{A})} \omega_{\infty} \times \prod_{p:\mathrm{prime}} \int_{\mathbb{G}(\mathbb{Z}_{p})} \omega_{p}
τ
(
G
)
=
∫
G
(
Z
)
\
G
(
A
)
ω
∞
×
p
:
p
r
i
m
e
∏
∫
G
(
Z
p
)
ω
p
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Tam} (\mathbb{SL}_{n}) = \frac{1}{\zeta (2) \zeta(3) \cdots \zeta(n)}.
T
a
m
(
S
L
n
)
=
1
ζ
(
2
)
ζ
(
3
)
⋯
ζ
(
n
)
.
\displaystyle \mathrm{Tam} (\mathbb{SL}_{n}) = \frac{1}{\zeta (2) \zeta(3) \cdots \zeta(n)}.
T
a
m
(
S
L
n
)
=
ζ
(
2
)
ζ
(
3
)
⋯
ζ
(
n
)
1
.
\displaystyle \mathrm{Example.}
E
x
a
m
p
l
e
.
\displaystyle \mathrm{Example.}
E
x
a
m
p
l
e
.
\displaystyle \mathrm{Tam} (\mathbb{SL}_{3}) = \frac{1}{\zeta (2) \zeta(3)}
T
a
m
(
S
L
3
)
=
1
ζ
(
2
)
ζ
(
3
)
\displaystyle \mathrm{Tam} (\mathbb{SL}_{3}) = \frac{1}{\zeta (2) \zeta(3)}
T
a
m
(
S
L
3
)
=
ζ
(
2
)
ζ
(
3
)
1
\displaystyle = \frac{6}{\pi^{2} \zeta (3)}.
=
6
π
2
ζ
(
3
)
.
\displaystyle = \frac{6}{\pi^{2} \zeta (3)}.
=
π
2
ζ
(
3
)
6
.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathbb{SO}_{2} = \left\{\left( \begin{array}{ccc} x & -y \\ y & x \end{array} \right) ~ \middle| ~ x^{2} + y^{2} = 1\right\}
S
O
2
=
{
(
x
−
y
y
x
)
undefined
x
2
+
y
2
=
1
}
\displaystyle \mathbb{SO}_{2} = \left\{\left( \begin{array}{ccc} x & -y \\ y & x \end{array} \right) ~ \middle| ~ x^{2} + y^{2} = 1\right\}
S
O
2
=
{
(
x
y
−
y
x
)
∣
∣
∣
∣
x
2
+
y
2
=
1
}
\displaystyle \cong \left\{(x, ~y) ~ \middle| ~ x^{2} + y^{2} = 1\right\}
≅
{
(
x
,
y
)
undefined
x
2
+
y
2
=
1
}
\displaystyle \cong \left\{(x, ~y) ~ \middle| ~ x^{2} + y^{2} = 1\right\}
≅
{
(
x
,
y
)
∣
∣
x
2
+
y
2
=
1
}
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Tam} \left(\mathbb{SO}_{2}\right) = \frac{~4~}{~\pi ~}.
T
a
m
(
S
O
2
)
=
4
π
.
\displaystyle \mathrm{Tam} \left(\mathbb{SO}_{2}\right) = \frac{~4~}{~\pi ~}.
T
a
m
(
S
O
2
)
=
π
4
.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
上の楕円曲線
\displaystyle E
E
\displaystyle E
E
に対し
\displaystyle \mathrm{Tam} (E) = \prod_{p:\mathrm{prime}} \frac{\left| E(\mathbb{F}_{p})\right|}{p}
T
a
m
(
E
)
=
∏
p
:
p
r
i
m
e
∣
E
(
F
p
)
∣
p
\displaystyle \mathrm{Tam} (E) = \prod_{p:\mathrm{prime}} \frac{\left| E(\mathbb{F}_{p})\right|}{p}
T
a
m
(
E
)
=
p
:
p
r
i
m
e
∏
p
∣
E
(
F
p
)
∣
および
\displaystyle \mathrm{Tam}_{t} (E) = \prod_{p:\mathrm{prime} ~ \leqq ~ t} \frac{\left| E(\mathbb{F}_{p})\right|}{p}.
T
a
m
t
(
E
)
=
∏
p
:
p
r
i
m
e
≦
t
∣
E
(
F
p
)
∣
p
.
\displaystyle \mathrm{Tam}_{t} (E) = \prod_{p:\mathrm{prime} ~ \leqq ~ t} \frac{\left| E(\mathbb{F}_{p})\right|}{p}.
T
a
m
t
(
E
)
=
p
:
p
r
i
m
e
≦
t
∏
p
∣
E
(
F
p
)
∣
.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle Let ~ r = \mathrm{rank}~E(\mathbb{Q}). ~ Then
L
e
t
r
=
r
a
n
k
E
(
Q
)
.
T
h
e
n
\displaystyle Let ~ r = \mathrm{rank}~E(\mathbb{Q}). ~ Then
L
e
t
r
=
r
a
n
k
E
(
Q
)
.
T
h
e
n
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (E)}{(\mathrm{log} ~ t)^{r}}
lim
t
→
∞
T
a
m
t
(
E
)
(
l
o
g
t
)
r
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (E)}{(\mathrm{log} ~ t)^{r}}
t
→
∞
lim
(
l
o
g
t
)
r
T
a
m
t
(
E
)
\displaystyle converges ~ to ~ finite ~ value ~ which ~ is ~ not ~ 0.
c
o
n
v
e
r
g
e
s
t
o
f
i
n
i
t
e
v
a
l
u
e
w
h
i
c
h
i
s
n
o
t
0
.
\displaystyle converges ~ to ~ finite ~ value ~ which ~ is ~ not ~ 0.
c
o
n
v
e
r
g
e
s
t
o
f
i
n
i
t
e
v
a
l
u
e
w
h
i
c
h
i
s
n
o
t
0
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle \mathrm{Conjecture.}
C
o
n
j
e
c
t
u
r
e
.
\displaystyle \mathrm{ord}_{s = 1} L(s, ~ E/\mathbb{Q}) = \mathrm{rank} ~ E(\mathbb{Q}).
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
.
\displaystyle \mathrm{ord}_{s = 1} L(s, ~ E/\mathbb{Q}) = \mathrm{rank} ~ E(\mathbb{Q}).
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
.
\displaystyle
\displaystyle
玉河数
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \mathrm{Theorem.}
T
h
e
o
r
e
m
.
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (E)}{(\mathrm{log} ~ t)^{\mathrm{rank} ~ E(\mathbb{Q})}}
lim
t
→
∞
T
a
m
t
(
E
)
(
l
o
g
t
)
r
a
n
k
E
(
Q
)
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (E)}{(\mathrm{log} ~ t)^{\mathrm{rank} ~ E(\mathbb{Q})}}
t
→
∞
lim
(
l
o
g
t
)
r
a
n
k
E
(
Q
)
T
a
m
t
(
E
)
\displaystyle \mathrm{ord}_{s = 1} L(s, ~ E/\mathbb{Q}) = \mathrm{rank} ~ E(\mathbb{Q}).
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
.
\displaystyle \mathrm{ord}_{s = 1} L(s, ~ E/\mathbb{Q}) = \mathrm{rank} ~ E(\mathbb{Q}).
o
r
d
s
=
1
L
(
s
,
E
/
Q
)
=
r
a
n
k
E
(
Q
)
.
\displaystyle E
E
\displaystyle E
E
を
\displaystyle \mathbb{Q}
Q
\displaystyle \mathbb{Q}
Q
上の楕円曲線とする.
が
\displaystyle 0
0
\displaystyle 0
0
でない有限値に収束すると仮定すると次が成立:
(1)
(2)
\displaystyle L(s, ~ E/\mathbb{Q})
L
(
s
,
E
/
Q
)
\displaystyle L(s, ~ E/\mathbb{Q})
L
(
s
,
E
/
Q
)
は
\displaystyle \mathrm{Re} (s) > 1
R
e
(
s
)
>
1
\displaystyle \mathrm{Re} (s) > 1
R
e
(
s
)
>
1
において零点なし.
\displaystyle
\displaystyle
玉河数
楕円曲線
E
E
E
E
の導手を
\displaystyle N_{E}
N
E
\displaystyle N_{E}
N
E
とする.
,
\displaystyle a(p, ~E)
a
(
p
,
E
)
\displaystyle a(p, ~E)
a
(
p
,
E
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle p + 1- |E( \mathbb{F}_{p})|
p
+
1
−
∣
E
(
F
p
)
∣
\displaystyle p + 1- |E( \mathbb{F}_{p})|
p
+
1
−
∣
E
(
F
p
)
∣
\displaystyle L(s, ~E/\mathbb{Q}) = \prod_{p~|~N_E} \frac{1}{1 - a(p, ~ E)\frac{1}{p^{s}} + p^{1-2s})}
L
(
s
,
E
/
Q
)
=
∏
p
∣
N
E
1
1
−
a
(
p
,
E
)
1
p
s
+
p
1
−
2
s
)
\displaystyle L(s, ~E/\mathbb{Q}) = \prod_{p~|~N_E} \frac{1}{1 - a(p, ~ E)\frac{1}{p^{s}} + p^{1-2s})}
L
(
s
,
E
/
Q
)
=
p
∣
N
E
∏
1
−
a
(
p
,
E
)
p
s
1
+
p
1
−
2
s
)
1
\displaystyle \times \prod_{p | N_{E}} \frac{1}{1 - a(p, ~ E) \frac{1}{p^{s}}}
×
∏
p
∣
N
E
1
1
−
a
(
p
,
E
)
1
p
s
\displaystyle \times \prod_{p | N_{E}} \frac{1}{1 - a(p, ~ E) \frac{1}{p^{s}}}
×
p
∣
N
E
∏
1
−
a
(
p
,
E
)
p
s
1
1
\displaystyle
\displaystyle
玉河数
すると,形式的には
\displaystyle L(1, ~ E/\mathbb{Q}) \cong \prod_{p~|~E_{N}} \frac{1}{1 - \frac{a(p, ~ E)}{p} + \frac{1}{p}}
L
(
1
,
E
/
Q
)
≅
∏
p
∣
E
N
1
1
−
a
(
p
,
E
)
p
+
1
p
\displaystyle L(1, ~ E/\mathbb{Q}) \cong \prod_{p~|~E_{N}} \frac{1}{1 - \frac{a(p, ~ E)}{p} + \frac{1}{p}}
L
(
1
,
E
/
Q
)
≅
p
∣
E
N
∏
1
−
p
a
(
p
,
E
)
+
p
1
1
\displaystyle = \prod_{p | E_{N}} \frac{1}{\frac{~|E(\mathbb{F}_{p}|~}{p}}
=
∏
p
∣
E
N
1
∣
E
(
F
p
∣
p
\displaystyle = \prod_{p | E_{N}} \frac{1}{\frac{~|E(\mathbb{F}_{p}|~}{p}}
=
p
∣
E
N
∏
p
∣
E
(
F
p
∣
1
\displaystyle \cong \frac{1}{\mathrm{Tam} (E)}.
≅
1
T
a
m
(
E
)
.
\displaystyle \cong \frac{1}{\mathrm{Tam} (E)}.
≅
T
a
m
(
E
)
1
.
つまり,
\displaystyle \mathrm{Tam} (E)
T
a
m
(
E
)
\displaystyle \mathrm{Tam} (E)
T
a
m
(
E
)
は
\displaystyle L(s, ~ E)
L
(
s
,
E
)
\displaystyle L(s, ~ E)
L
(
s
,
E
)
の中心Euler積の逆数.
\displaystyle
\displaystyle
Deep Riemann Hypothesis
\displaystyle
\displaystyle
Deep Riemann Hypothesis
Galois表現
\displaystyle \rho : \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow GL_{n} (K)
ρ
:
G
a
l
(
Q
‾
/
Q
)
⟶
G
L
n
(
K
)
\displaystyle \rho : \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow GL_{n} (K)
ρ
:
G
a
l
(
Q
/
Q
)
⟶
G
L
n
(
K
)
に対して考える.
\displaystyle L(s, ~\rho)
L
(
s
,
ρ
)
\displaystyle L(s, ~\rho)
L
(
s
,
ρ
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p} \frac{1}{\mathrm{det} ( 1- \rho (\mathrm{Frob}_{p})p^{-s}}
∏
p
1
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
p
−
s
\displaystyle \prod_{p} \frac{1}{\mathrm{det} ( 1- \rho (\mathrm{Frob}_{p})p^{-s}}
p
∏
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
p
−
s
1
簡単のため,Frobenius元
\displaystyle \mathrm{Frob}_{p}
F
r
o
b
p
\displaystyle \mathrm{Frob}_{p}
F
r
o
b
p
によって決められる
という
\displaystyle L
L
\displaystyle L
L
関数は極を持たないものとする.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Definition.}
D
e
f
i
n
i
t
i
o
n
.
\displaystyle \mathrm{Tam} (\rho)
T
a
m
(
ρ
)
\displaystyle \mathrm{Tam} (\rho)
T
a
m
(
ρ
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p} \mathrm{det} \left(1 - \rho (\mathrm{Frob}_{p}) \frac{1}{p^{\frac{k}{2}}}\right)
∏
p
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
1
p
k
2
)
\displaystyle \prod_{p} \mathrm{det} \left(1 - \rho (\mathrm{Frob}_{p}) \frac{1}{p^{\frac{k}{2}}}\right)
p
∏
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
p
2
k
1
)
\displaystyle \mathrm{Tam}_{t} (\rho)
T
a
m
t
(
ρ
)
\displaystyle \mathrm{Tam}_{t} (\rho)
T
a
m
t
(
ρ
)
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \prod_{p \leqq t} \mathrm{det} \left(1 - \rho (\mathrm{Frob}_{p}) \frac{1}{p^{\frac{k}{2}}}\right)
∏
p
≦
t
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
1
p
k
2
)
\displaystyle \prod_{p \leqq t} \mathrm{det} \left(1 - \rho (\mathrm{Frob}_{p}) \frac{1}{p^{\frac{k}{2}}}\right)
p
≦
t
∏
d
e
t
(
1
−
ρ
(
F
r
o
b
p
)
p
2
k
1
)
\displaystyle
\displaystyle
Deep Riemann Hypothesis
\displaystyle \mathrm{Conjecture.} ~~~ (\mathrm{Deep ~ Riemann ~ Hypothesis)}
C
o
n
j
e
c
t
u
r
e
.
(
D
e
e
p
R
i
e
m
a
n
n
H
y
p
o
t
h
e
s
i
s
)
\displaystyle \mathrm{Conjecture.} ~~~ (\mathrm{Deep ~ Riemann ~ Hypothesis)}
C
o
n
j
e
c
t
u
r
e
.
(
D
e
e
p
R
i
e
m
a
n
n
H
y
p
o
t
h
e
s
i
s
)
\displaystyle Let
L
e
t
\displaystyle Let
L
e
t
\displaystyle r
r
\displaystyle r
r
\displaystyle =
=
\displaystyle =
=
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{def}
d
e
f
\displaystyle \mathrm{ord}_{s = \frac{k}{2}} L(s, ~ \rho).
o
r
d
s
=
k
2
L
(
s
,
ρ
)
.
\displaystyle \mathrm{ord}_{s = \frac{k}{2}} L(s, ~ \rho).
o
r
d
s
=
2
k
L
(
s
,
ρ
)
.
\displaystyle Then
T
h
e
n
\displaystyle Then
T
h
e
n
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (\rho)}{(\mathrm{log} ~ t)^{r}}
lim
t
→
∞
T
a
m
t
(
ρ
)
(
l
o
g
t
)
r
\displaystyle \lim_{t \to \infty} \frac{\mathrm{Tam}_{t} (\rho)}{(\mathrm{log} ~ t)^{r}}
t
→
∞
lim
(
l
o
g
t
)
r
T
a
m
t
(
ρ
)
\displaystyle converges ~ to ~ finite ~ value ~ which ~ is ~ not ~ 0.
c
o
n
v
e
r
g
e
s
t
o
f
i
n
i
t
e
v
a
l
u
e
w
h
i
c
h
i
s
n
o
t
0
.
\displaystyle converges ~ to ~ finite ~ value ~ which ~ is ~ not ~ 0.
c
o
n
v
e
r
g
e
s
t
o
f
i
n
i
t
e
v
a
l
u
e
w
h
i
c
h
i
s
n
o
t
0
.
これは,Riemann予想
「
\displaystyle L(s, ~\rho)
L
(
s
,
ρ
)
\displaystyle L(s, ~\rho)
L
(
s
,
ρ
)
は
\displaystyle \mathrm{Re} (s) > \frac{k}{2}
R
e
(
s
)
>
k
2
\displaystyle \mathrm{Re} (s) > \frac{k}{2}
R
e
(
s
)
>
2
k
において
零点を持たない
」
を導き,より "深い" 予想.
\displaystyle
\displaystyle
Thank you for your attention!
Made with Slides.com