The Large Number on Prime Numbers:

Skewes Number

@Riemann_Zeta_F

\displaystyle \pi (x) = \sum_{m = 1}^{\infty} \frac{\mu(m)}{m} \left(\mathrm{li} (x^{\frac{1}{m}}) - \sum_{\rho} \mathrm{li} (x^{\frac{\rho}{m}}) + \int_{x^{\frac{1}{m}}}^{\infty} \frac{1}{t(t^{2} - 1)} dt - \log 2\right)
π(x)=m=1μ(m)m(li(x1m)ρli(xρm)+x1m1t(t21)dtlog2)\displaystyle \pi (x) = \sum_{m = 1}^{\infty} \frac{\mu(m)}{m} \left(\mathrm{li} (x^{\frac{1}{m}}) - \sum_{\rho} \mathrm{li} (x^{\frac{\rho}{m}}) + \int_{x^{\frac{1}{m}}}^{\infty} \frac{1}{t(t^{2} - 1)} dt - \log 2\right)
\displaystyle \pi (x) < \mathrm{Li} (x)
π(x)<Li(x)\displaystyle \pi (x) < \mathrm{Li} (x)
\displaystyle \mathrm{Li} (x) - \frac{1}{2} \mathrm{Li} (x^{\frac{1}{2}}) - \frac{1}{3} \mathrm{Li} (x^{\frac{1}{3}}) - \frac{1}{5} \mathrm{Li} (x^{\frac{1}{5}}) + \frac{1}{6} \mathrm{Li} (x^{\frac{1}{6}}) - \cdots
Li(x)12Li(x12)13Li(x13)15Li(x15)+16Li(x16)\displaystyle \mathrm{Li} (x) - \frac{1}{2} \mathrm{Li} (x^{\frac{1}{2}}) - \frac{1}{3} \mathrm{Li} (x^{\frac{1}{3}}) - \frac{1}{5} \mathrm{Li} (x^{\frac{1}{5}}) + \frac{1}{6} \mathrm{Li} (x^{\frac{1}{6}}) - \cdots
\displaystyle \zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^{s}}
ζ(s)=k=11ks\displaystyle \zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^{s}}
\displaystyle \pi (e^{e^{e^{79}}}) > \mathrm{Li} (e^{e^{e^{79}}})
π(eee79)>Li(eee79)\displaystyle \pi (e^{e^{e^{79}}}) > \mathrm{Li} (e^{e^{e^{79}}})
?
??
\displaystyle \pi (x) \sim \frac{x}{\log x}
π(x)xlogx\displaystyle \pi (x) \sim \frac{x}{\log x}

2017. 10. 08.

@Romantic Mathnight

in

\displaystyle \mathrm{MATH~ POWE}\mathbb{R}^{2017}
MATH POWER2017\displaystyle \mathrm{MATH~ POWE}\mathbb{R}^{2017}
\displaystyle \mathrm{def}
def\displaystyle \mathrm{def}
\displaystyle L \left(s + \frac{n - 1}{2};~\left(\mathrm{Sym}^{n - 1} \rho_{E, \ell}\right)|_{F'}\right) = L (s; \mathrm{\Pi}_{m, n})
L(s+n12; (Symn1ρE,)F)=L(s;Πm,n)\displaystyle L \left(s + \frac{n - 1}{2};~\left(\mathrm{Sym}^{n - 1} \rho_{E, \ell}\right)|_{F'}\right) = L (s; \mathrm{\Pi}_{m, n})
The Large Number on Prime Numbers: Skewes Number @Riemann_Zeta_F \displaystyle \pi (x) = \sum_{m = 1}^{\infty} \frac{\mu(m)}{m} \left(\mathrm{li} (x^{\frac{1}{m}}) - \sum_{\rho} \mathrm{li} (x^{\frac{\rho}{m}}) + \int_{x^{\frac{1}{m}}}^{\infty} \frac{1}{t(t^{2} - 1)} dt - \log 2\right) π ( x ) = ∑ m = 1 ∞ μ ( m ) m ( l i ( x 1 m ) − ∑ ρ l i ( x ρ m ) + ∫ x 1 m ∞ 1 t ( t 2 − 1 ) d t − log ⁡ 2 ) \displaystyle \pi (x) < \mathrm{Li} (x) π ( x ) < L i ( x ) \displaystyle \mathrm{Li} (x) - \frac{1}{2} \mathrm{Li} (x^{\frac{1}{2}}) - \frac{1}{3} \mathrm{Li} (x^{\frac{1}{3}}) - \frac{1}{5} \mathrm{Li} (x^{\frac{1}{5}}) + \frac{1}{6} \mathrm{Li} (x^{\frac{1}{6}}) - \cdots L i ( x ) − 1 2 L i ( x 1 2 ) − 1 3 L i ( x 1 3 ) − 1 5 L i ( x 1 5 ) + 1 6 L i ( x 1 6 ) − ⋯ \displaystyle \zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^{s}} ζ ( s ) = ∑ k = 1 ∞ 1 k s \displaystyle \pi (e^{e^{e^{79}}}) > \mathrm{Li} (e^{e^{e^{79}}}) π ( e e e 7 9 ) > L i ( e e e 7 9 ) ? ? \displaystyle \pi (x) \sim \frac{x}{\log x} π ( x ) ∼ x log ⁡ x 2017. 10. 08. @Romantic Mathnight in \displaystyle \mathrm{MATH~ POWE}\mathbb{R}^{2017} M A T H P O W E R 2 0 1 7 \displaystyle \mathrm{def} d e f \displaystyle L \left(s + \frac{n - 1}{2};~\left(\mathrm{Sym}^{n - 1} \rho_{E, \ell}\right)|_{F'}\right) = L (s; \mathrm{\Pi}_{m, n}) L ( s + n − 1 2 ; ( S y m n − 1 ρ E , ℓ ) ∣ F ′ ) = L ( s ; Π m , n )
Made with Slides.com