\displaystyle
x \leqq e^{e^{e^{e^{7.705}}}} = 10^{10^{10^{963}}}
x≦eeee7.705=101010963
Lehman (1960)
\displaystyle
x \leqq 1.65 \times 10^{1065}
x≦1.65×101065
te Riele (1987)
\displaystyle
x \leqq 6.69 \times 10^{370}
x≦6.69×10370
Prime Number Races
Prime Number Races
\displaystyle
\mod 3
mod3
Race.
Team
\displaystyle
1
1
\displaystyle
2, 5, 11, 17, 23, 29, 41, 47\cdots
2,5,11,17,23,29,41,47⋯
Team
\displaystyle
2
2
\displaystyle
7, 13, 19, 31, 37, 43, 61, \cdots
7,13,19,31,37,43,61,⋯
Prime Number Races
\displaystyle
\mod 3
mod3
の素数を数える:
\displaystyle
\pi_{3, ~ 2}^{\mathrm{mod}} (x)
π3,2mod(x)
\displaystyle
\pi_{3, ~1}^{\mathrm{mod}} (x)
π3,1mod(x)
\displaystyle
x
x
\displaystyle
100
100
\displaystyle
11
11
\displaystyle
13
13
\displaystyle
80
80
\displaystyle
87
87
\displaystyle
1000
1000
\displaystyle
611
611
\displaystyle
617
617
\displaystyle
10000
10000
\displaystyle
100000
100000
\displaystyle4784
4784
\displaystyle
4807
4807
\displaystyle
1000000
1000000
\displaystyle
39266
39266
\displaystyle
39231
39231
Prime Number Races
\displaystyle
\mod 3
mod3
の素数レースは, 無限回符号が
入れかわることが知られている.
最初に入れかわる数:
\displaystyle
x = 608981813029.
x=608981813029.
1976年のクリスマスに, Bays, Hudsonによって発見された.
Thank you for your attention!
The Large Number on Prime Numbers: Skewes Number @Riemann_Zeta_F \displaystyle
\pi (x) = \sum_{m = 1}^{\infty} \frac{\mu(m)}{m} \left(\mathrm{li} (x^{\frac{1}{m}}) - \sum_{\rho} \mathrm{li} (x^{\frac{\rho}{m}}) + \int_{x^{\frac{1}{m}}}^{\infty} \frac{1}{t(t^{2} - 1)} dt - \log 2\right) π ( x ) = ∑ m = 1 ∞ μ ( m ) m ( l i ( x 1 m ) − ∑ ρ l i ( x ρ m ) + ∫ x 1 m ∞ 1 t ( t 2 − 1 ) d t − log 2 ) \displaystyle
\pi (x) < \mathrm{Li} (x) π ( x ) < L i ( x ) \displaystyle
\mathrm{Li} (x) - \frac{1}{2} \mathrm{Li} (x^{\frac{1}{2}}) - \frac{1}{3} \mathrm{Li} (x^{\frac{1}{3}}) - \frac{1}{5} \mathrm{Li} (x^{\frac{1}{5}}) + \frac{1}{6} \mathrm{Li} (x^{\frac{1}{6}})
- \cdots L i ( x ) − 1 2 L i ( x 1 2 ) − 1 3 L i ( x 1 3 ) − 1 5 L i ( x 1 5 ) + 1 6 L i ( x 1 6 ) − ⋯ \displaystyle
\zeta (s) = \sum_{k = 1}^{\infty} \frac{1}{k^{s}} ζ ( s ) = ∑ k = 1 ∞ 1 k s \displaystyle
\pi (e^{e^{e^{79}}}) > \mathrm{Li} (e^{e^{e^{79}}}) π ( e e e 7 9 ) > L i ( e e e 7 9 ) ? ? \displaystyle
\pi (x) \sim \frac{x}{\log x} π ( x ) ∼ x log x 2017. 10. 08. @Romantic Mathnight in \displaystyle
\mathrm{MATH~ POWE}\mathbb{R}^{2017} M A T H P O W E R 2 0 1 7 \displaystyle
\mathrm{def} d e f \displaystyle
L \left(s + \frac{n - 1}{2};~\left(\mathrm{Sym}^{n - 1} \rho_{E, \ell}\right)|_{F'}\right) = L (s; \mathrm{\Pi}_{m, n}) L ( s + n − 1 2 ; ( S y m n − 1 ρ E , ℓ ) ∣ F ′ ) = L ( s ; Π m , n )