Efficient Reduction of Kappa Models by Static Inspection of the Rule-Set

Andreea Beica, Calin C. Guet, and Tatjana Petrov

Total Spoilage!

\text{(if } k_2 << k_3 \text{ or concentration of E is low)}
(if k2<<k3 or concentration of E is low)\text{(if } k_2 << k_3 \text{ or concentration of E is low)}

Stochastic Chemical

Reaction Networks

Rule Based Model (Kappa)

Enzimatic Reduction (Reactions)

Enzimatic Reduction (Rules)

Stochastic Chemical Reaction Networks

\text{Well mixed system with molecular species:}
Well mixed system with molecular species:\text{Well mixed system with molecular species:}
S = \{S_1, ... , S_n \}
S={S1,...,Sn}S = \{S_1, ... , S_n \}
\text{State is a multiset of species:}
State is a multiset of species:\text{State is a multiset of species:}
x = (x_1, ... , x_n) \in \mathbb{N}^n
x=(x1,...,xn)Nnx = (x_1, ... , x_n) \in \mathbb{N}^n
\text{Reaction defined by }rate\text{ and }production\text{ and }consumption\text{ vector:}
Reaction defined by rate and production and consumption vector:\text{Reaction defined by }rate\text{ and }production\text{ and }consumption\text{ vector:}
r_j \equiv (a_j, \nu_j, c_j) \in \mathbb{N}^n \times \mathbb{N}^n \times \mathbb{R}_{\geq 0}
rj(aj,νj,cj)Nn×Nn×R0r_j \equiv (a_j, \nu_j, c_j) \in \mathbb{N}^n \times \mathbb{N}^n \times \mathbb{R}_{\geq 0}
\text{Reaction semantics:}
Reaction semantics:\text{Reaction semantics:}
\text{Reaction defined by }rate\text{ and }production\text{ and }consumption\text{ vector:}
Reaction defined by rate and production and consumption vector:\text{Reaction defined by }rate\text{ and }production\text{ and }consumption\text{ vector:}
r_j \equiv (a_j, \nu_j, c_j) \in \mathbb{N}^n \times \mathbb{N}^n \times \mathbb{R}_{\geq 0}
rj(aj,νj,cj)Nn×Nn×R0r_j \equiv (a_j, \nu_j, c_j) \in \mathbb{N}^n \times \mathbb{N}^n \times \mathbb{R}_{\geq 0}

??!

\mathbb{Z}^n
Zn\mathbb{Z}^n

Stochastic Semantics (Markov Chain)

Deterministic Semantics (ODE)

N \to \infty
NN \to \infty

Reduction Algorithm

Modifier Elimination

A + B + C \to A:C + B
A+B+CA:C+BA + B + C \to A:C + B
A + C \to A:C
A+CA:CA + C \to A:C

~

Similar Reaction Composition

A + 2B \to A:B + C
A+2BA:B+CA + 2B \to A:B + C
3A + 2B \to 2A:B + 4C
3A+2B2A:B+4C3A + 2B \to 2A:B + 4C

~

3A + 4B \to 3A:B + 5C
3A+4B3A:B+5C3A + 4B \to 3A:B + 5C

Fast Dimerisation Reduction

M + M \to M_2
M+MM2M + M \to M_2

(assuming the reaction rate is fast)

~

\text{New specie } M_T \text{ replaces both } M \text{ and } M_2
New specie MT replaces both M and M2\text{New specie } M_T \text{ replaces both } M \text{ and } M_2

Generalised Enzymatic Reduction

\lambda-phage \text{ Model}
λphage Model\lambda-phage \text{ Model}
\text{92 species, 13 rules, 61 species } \rightarrow \text{ 5 proteins and 11 rules}
92 species, 13 rules, 61 species  5 proteins and 11 rules\text{92 species, 13 rules, 61 species } \rightarrow \text{ 5 proteins and 11 rules}

Conclusions

  • Technique designed for stochastic reaction networks applied to Kappa models
  • Tailored for GRNs - applications to other types of models are an open question (so far, it is not looking great)
  • Implementation in OCaml

Kappa reductions

By Samuel Pastva

Kappa reductions

  • 376