Vectors,  Tensors and the Basic Equations of Fluid Mechanics

Agenda

 
  1. Vectors and Tensors: The Basics

  2. The Kinematics of Fluid Motion

 

Vectors and Tensors

The mathy bits

\bold{a}=a_x \hat{i}+a_y \hat{j}+a_z \hat{k}
a=axi^+ayj^+azk^\bold{a}=a_x \hat{i}+a_y \hat{j}+a_z \hat{k}

Vector Notation

\(\bold{x} \times \bold{y} = (x_j y_k-x_k y_j )\hat{i} + (x_k y_i-x_i y_k)\hat{j} + (x_iy_j-x_jy_i)\hat{k}\)

Cross Product

\bold{x} \times \bold{y}: \left[ {\begin{array}{cc} \hat{i}&\hat{j}&\hat{k}\\ x_i&x_j&x_k\\ y_i&y_j&y_k \end{array} } \right]
x×y:[i^j^k^xixjxkyiyjyk]\bold{x} \times \bold{y}: \left[ {\begin{array}{cc} \hat{i}&\hat{j}&\hat{k}\\ x_i&x_j&x_k\\ y_i&y_j&y_k \end{array} } \right]

What is a Tensor?

 
  •          components

  • n base units

  • Changes with the coordinate system

 
3^{n-1}
3n13^{n-1}
\bold{n}=\left[ {\begin{array}{cc} n_x\\ n_y\\ n_z \end{array} } \right]
n=[nxnynz]\bold{n}=\left[ {\begin{array}{cc} n_x\\ n_y\\ n_z \end{array} } \right]
\bold{m}=\left[ {\begin{array}{cc} n_{xx}&n_{xy}&n_{xz}\\ n_{yx}&n_{yy}&n_{yz}\\ n_{zx}&n_{zy}&n_{zz} \end{array} } \right]
m=[nxxnxynxznyxnyynyznzxnzynzz]\bold{m}=\left[ {\begin{array}{cc} n_{xx}&n_{xy}&n_{xz}\\ n_{yx}&n_{yy}&n_{yz}\\ n_{zx}&n_{zy}&n_{zz} \end{array} } \right]

Second Rank Tensor (Vector)

Third Rank Tensor

Text

J=\frac{\delta (x,y)}{\delta (r,\theta)}=det(\left[ {\begin{array}{cc} \frac{\delta x}{\delta r}&\frac{\delta x}{\delta \theta}\\ \frac{\delta y}{\delta r}&\frac{\delta y}{\delta \theta} \end{array} } \right])
J=δ(x,y)δ(r,θ)=det([δxδrδxδθδyδrδyδθ])J=\frac{\delta (x,y)}{\delta (r,\theta)}=det(\left[ {\begin{array}{cc} \frac{\delta x}{\delta r}&\frac{\delta x}{\delta \theta}\\ \frac{\delta y}{\delta r}&\frac{\delta y}{\delta \theta} \end{array} } \right])
=\frac{\delta x}{\delta r} \cdot \frac{\delta y}{\delta \theta} - \frac{\delta x}{\delta \theta} \cdot \frac{\delta y}{\delta r}
=δxδrδyδθδxδθδyδr=\frac{\delta x}{\delta r} \cdot \frac{\delta y}{\delta \theta} - \frac{\delta x}{\delta \theta} \cdot \frac{\delta y}{\delta r}

The Jacobian

The Kinematics of Fluid Motion

Continuum Mechanics

\bold{x}=\bold{x}(\bold{\sigma},t)
x=x(σ,t)\bold{x}=\bold{x}(\bold{\sigma},t)

where \(\sigma\) is the inital postion vector

x_i=x_i (\sigma_x,\sigma_y,\sigma_z,t)
xi=xi(σx,σy,σz,t)x_i=x_i (\sigma_x,\sigma_y,\sigma_z,t)
\bold{\sigma}=\bold{\sigma}(\bold{x},t)
σ=σ(x,t)\bold{\sigma}=\bold{\sigma}(\bold{x},t)
\sigma_i=\sigma_i (x_x,x_y,x_z,t)
σi=σi(xx,xy,xz,t)\sigma_i=\sigma_i (x_x,x_y,x_z,t)

Material Properties:

Spatial

Properties:

p(\bold{x},t)=p(\sigma(\bold{x},t),t)
p(x,t)=p(σ(x,t),t)p(\bold{x},t)=p(\sigma(\bold{x},t),t)

The property of the material at position \(\bold{x}\) and time \(t\) is the value for a particle which is at \(\bold{x}\) at time \(t\) !

dV=JdV_0
dV=JdV0dV=JdV_0

Dilation

Vectors and the Basic Equations of Fluid Mechanics

By Dalton Scott

Vectors and the Basic Equations of Fluid Mechanics

A brief presentatation on Vectors and the Basic Equations of Fluid Mechanics

  • 828