#
**Functional**

#
**Programming**

#
**in**

#
**
5 Minutes**

**Which is impossible**

**So let's rather try...**

#
**Learn to Curry**

#
**in**

#
**
5 Minutes**

**JSDC.tw 2013 Lightning Talk**

## Gias Kay Lee

## Currying.

Perhaps you've been told by someone before that this is one of those "advanced JavaScript techniques" you'll need to learn to become a true JavaScript ninja.

But the truth is...

http://commons.wikimedia.org/wiki/File:Phanaeng_kai.jpg

##
**Currying,**

**is a basic functional programming technique.**

**And in order to become a true JavaScript ninja,**

**what you really need to master is the art of**

##
**
Functional Programming.
**

## Lisp

## Scheme

Functional

## Smalltalk

## Self

Object-oriented

**has half of its root in it.**

##
**Because JavaScript
**

##
**Let's start with something**

##
**familiar**

##
**λ Function **

**AKA Anonymous Function**

**originated from a mathematical system called**

##
**λ Calculus**

##
**λ Calculus**

**is about simplifying mathematical expressions into
**

##
**λ Expressions**

**to unveil the true nature of underlying computations**

##
**To achieve this simplification**

**Functions**

##
**cube(x) = x * x * x**

##
**are expressed without names
**

##
**(x) → x * x * x
**

**...and can only have**

##
**
1 argument
**

**To handle a**

##
**
multi-argument function
**

**it needs to first go through the process of...**

##
**Currying (n.)**

**A technique of transforming a multi-argument function in such a way that it can be called as a chain of functions, each with a single argument.**

## And the name comes from...

http://commons.wikimedia.org/wiki/File:Curry_Ist.jpg

## Haskell Curry

(1900 – 1982)

also immortalized as the name of

the popular pure functional language

## Haskell

http://en.wikipedia.org/wiki/File:Haskell-Logo.svg

So

## (x, y) → x + y

can be curried into

## x → (y → x + y)

Or, in classical notation

## f(x, y) = x + y

can be curried into

## g(x) = y → f(x, y)

##
**Still very confusing?**

##
**Let's speak JavaScript!
**

**a multi-argument function**

function(x, y) {

return x + y;

}

**when curried, will become**

**a chain of functions, each**

**with a single argument**

function(x) {

return function(y) {

return x + y;

};

}

**if we give them names**

function f(x, y) {

return x + y;

}

**then...**

function g(x) {

return function(y) {

return x + y;

};

}

f(1, 2) === g(1)(2);

**now, since functions are**

**first-class citizens...**

**we can also do it**

**like this**

function g(h) {

return function(y) {

return h(h(y));

};

}

81 === g(function(x) {

return x * x;

})(3);

function g(h) {

return function(y) {

return h(h(y));

};

}

**if we only supply**

**one of the arguments**

**to the curried function...**

var n = g(function(x) {

return x * x;

});

**we'll be able to reuse it**

**like this**

337 === n(3) + n(4);

**This is called**

##
**
Partial Application
**

**and is not the same with currying**

**actually, for functions with**

**an arity greater than 2**

function f(x, y, z) {

return x + y + z;

}

**the correct way to**

**partially apply is through**

**bind()**

var f1 = f.bind(null, 1);

**call to a partially applied**

**function returns the result,**

**not another function down**

**the currying chain**

6 === f1(2, 3);

**Now I guess we're
**

**
**

##
**running low on time**

**
**

**so...**

# One last bit

that the reverse process of currying

## uncurrying

is closely related with

a more familiar concept

## apply.

#
**Questions?**

**Nah, we're running outta time. Seriously.**

**This slide can be found on
**

##
**
slid.es/gsklee
**

#### Functional Programming in 5 Minutes

By G. Kay Lee

#### Navigation instructions

Press the space key or click the arrows to the right