Data science for lazy people... genetics will work for you!

Diego Hueltes

About me

 

- Python engineer at RavenPack in      Marbella, Málaga (we're hiring)

 

- Big Data teacher and mentor at EOI (Escuela de Organización Industrial)

 

- Data science enthusiast

lazy Oxford dictionary

Unwilling to work or use energy

in repetitive tasks

Diego dictionary

Original image from https://github.com/rhiever/tpot

Automated Machine Learning

TPOT is a Python tool that automatically creates and optimizes machine learning pipelines using genetic programming.

Scikit-learn pipelines

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC

count_vectorizer = CountVectorizer(ngram_range=(1, 4), analyzer='char')
X_train = count_vectorizer.fit_transform(train)
X_test  = count_vectorizer.transform(test)

linear_svc = LinearSVC()
model = linear_svc.fit(X_train, y_train)

y_test = model.predict(X_test)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC

pipeline = Pipeline([
    ('count_vectorizer', CountVectorizer(ngram_range=(1, 4), analyzer='char')),
    ('linear_svc', LinearSVC())
])
model = pipeline.fit(train)
y_test = model.predict(test)
feature_selection.GenericUnivariateSelect([...])
feature_selection.SelectPercentile([...])
feature_selection.SelectKBest([score_func, k])
feature_selection.SelectFpr([score_func, alpha])
feature_selection.SelectFdr([score_func, alpha])
feature_selection.SelectFromModel(estimator)
feature_selection.SelectFwe([score_func, alpha])
feature_selection.RFE(estimator[, ...])
feature_selection.RFECV(estimator[, step, ...])
feature_selection.VarianceThreshold([threshold])
feature_selection.chi2(X, y)
feature_selection.f_classif(X, y)
feature_selection.f_regression(X, y[, center])
feature_selection.mutual_info_classif(X, y)
feature_selection.mutual_info_regression(X, y)

Feature selectors

preprocessing.Binarizer([threshold, copy])
preprocessing.FunctionTransformer([func, ...])
preprocessing.Imputer([missing_values, ...])
preprocessing.KernelCenterer
preprocessing.LabelBinarizer([neg_label, ...])
preprocessing.LabelEncoder
preprocessing.MultiLabelBinarizer([classes, ...])
preprocessing.MaxAbsScaler([copy])
preprocessing.MinMaxScaler([feature_range, copy])
preprocessing.Normalizer([norm, copy])
preprocessing.OneHotEncoder([n_values, ...])
preprocessing.PolynomialFeatures([degree, ...])
preprocessing.RobustScaler([with_centering, ...])
preprocessing.StandardScaler([copy, ...])
preprocessing.add_dummy_feature(X[, value])
preprocessing.binarize(X[, threshold, copy])
preprocessing.label_binarize(y, classes[, ...])
preprocessing.maxabs_scale(X[, axis, copy])
preprocessing.minmax_scale(X[, ...])
preprocessing.normalize(X[, norm, axis, ...])
preprocessing.robust_scale(X[, axis, ...])
preprocessing.scale(X[, axis, with_mean, ...])

Preprocessors

sklearn.ensemble.GradientBoostingClassifier
sklearn.tree.DecisionTreeClassifier
sklearn.neighbors.KNeighborsClassifier
sklearn.ensemble.ExtraTreesClassifier
xgboost.XGBClassifier
sklearn.ensemble.RandomForestClassifier
sklearn.linear_model.LogisticRegression
sklearn.svm.LinearSVC

sklearn.neighbors.KNeighborsRegressor
sklearn.linear_model.RidgeCV
sklearn.linear_model.ElasticNetCV
sklearn.tree.DecisionTreeRegressor
sklearn.ensemble.AdaBoostRegressor
sklearn.ensemble.GradientBoostingRegressor
sklearn.svm.LinearSVR
sklearn.linear_model.LassoLarsCV
sklearn.ensemble.ExtraTreesRegressor
sklearn.ensemble.RandomForestRegressor
xgboost.XGBRegressor

Classifiers & Regressors

Genetic programming

Source: http://www.genetic-programming.org/gpbook4toc.html​

Photo: Diego Hueltes

Crossover

Mutation

Source http://w3.onera.fr/smac/?q=tracker

TPOT

from tpot import TPOTClassifier, TPOTRegressor

tpot = TPOTClassifier()
tpot.fit(X_train, y_train)

tpot = TPOTRegressor()
tpot.fit(X_train, y_train)

Basic usage

$ tpot data/mnist.csv -is , -target class -o tpot_exported_pipeline.py -g 5 -p 20

Parameters

class TPOTBase(BaseEstimator):

    def __init__(self, generations=100, population_size=100, offspring_size=None,
                 mutation_rate=0.9, crossover_rate=0.1,
                 scoring=None, cv=5, n_jobs=1,
                 max_time_mins=None, max_eval_time_mins=5,
                 random_state=None, config_dict=None, warm_start=False,
                 verbosity=0, disable_update_check=False):

Config dict

classifier_config_dict = {

    # Classifiers
    'sklearn.naive_bayes.GaussianNB': {
    },

    'sklearn.naive_bayes.BernoulliNB': {
        'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.],
        'fit_prior': [True, False]
    },

    'sklearn.naive_bayes.MultinomialNB': {
        'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.],
        'fit_prior': [True, False]
    },

    'sklearn.tree.DecisionTreeClassifier': {
        'criterion': ["gini", "entropy"],
        'max_depth': range(1, 11),
        'min_samples_split': range(2, 21),
        'min_samples_leaf': range(1, 21)
    },

    'sklearn.ensemble.ExtraTreesClassifier': {
        'n_estimators': [100],
        'criterion': ["gini", "entropy"],
        'max_features': np.arange(0.05, 1.01, 0.05),
        'min_samples_split': range(2, 21),
        'min_samples_leaf': range(1, 21),
        'bootstrap': [True, False]
    },

    'sklearn.ensemble.RandomForestClassifier': {
        'n_estimators': [100],
        'criterion': ["gini", "entropy"],
        'max_features': np.arange(0.05, 1.01, 0.05),
        'min_samples_split': range(2, 21),
        'min_samples_leaf':  range(1, 21),
        'bootstrap': [True, False]
    },

    'sklearn.ensemble.GradientBoostingClassifier': {
        'n_estimators': [100],
        'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.],
        'max_depth': range(1, 11),
        'min_samples_split': range(2, 21),
        'min_samples_leaf': range(1, 21),
        'subsample': np.arange(0.05, 1.01, 0.05),
        'max_features': np.arange(0.05, 1.01, 0.05)
    },

    'sklearn.neighbors.KNeighborsClassifier': {
        'n_neighbors': range(1, 101),
        'weights': ["uniform", "distance"],
        'p': [1, 2]
    },

    'sklearn.svm.LinearSVC': {
        'penalty': ["l1", "l2"],
        'loss': ["hinge", "squared_hinge"],
        'dual': [True, False],
        'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
        'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.]
    },

    'sklearn.linear_model.LogisticRegression': {
        'penalty': ["l1", "l2"],
        'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.],
        'dual': [True, False]
    },

    'xgboost.XGBClassifier': {
        'n_estimators': [100],
        'max_depth': range(1, 11),
        'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.],
        'subsample': np.arange(0.05, 1.01, 0.05),
        'min_child_weight': range(1, 21),
        'nthread': [1]
    },

    # Preprocesssors
    'sklearn.preprocessing.Binarizer': {
        'threshold': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.decomposition.FastICA': {
        'tol': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.cluster.FeatureAgglomeration': {
        'linkage': ['ward', 'complete', 'average'],
        'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine', 'precomputed']
    },

    'sklearn.preprocessing.MaxAbsScaler': {
    },

    'sklearn.preprocessing.MinMaxScaler': {
    },

    'sklearn.preprocessing.Normalizer': {
        'norm': ['l1', 'l2', 'max']
    },

    'sklearn.kernel_approximation.Nystroem': {
        'kernel': ['rbf', 'cosine', 'chi2', 'laplacian', 'polynomial', 'poly', 'linear', 'additive_chi2', 'sigmoid'],
        'gamma': np.arange(0.0, 1.01, 0.05),
        'n_components': range(1, 11)
    },

    'sklearn.decomposition.PCA': {
        'svd_solver': ['randomized'],
        'iterated_power': range(1, 11)
    },

    'sklearn.preprocessing.PolynomialFeatures': {
        'degree': [2],
        'include_bias': [False],
        'interaction_only': [False]
    },

    'sklearn.kernel_approximation.RBFSampler': {
        'gamma': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.preprocessing.RobustScaler': {
    },

    'sklearn.preprocessing.StandardScaler': {
    },

    'tpot.built_in_operators.ZeroCount': {
    },

    # Selectors
    'sklearn.feature_selection.SelectFwe': {
        'alpha': np.arange(0, 0.05, 0.001),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            } # read from dependencies ! need add an exception in preprocess_args

    },

    'sklearn.feature_selection.SelectKBest': {
        'k': range(1, 100), # need check range!
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.SelectPercentile': {
        'percentile': range(1, 100),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.VarianceThreshold': {
        'threshold': np.arange(0.05, 1.01, 0.05)
    },

    'sklearn.feature_selection.RFE': {
        'step': np.arange(0.05, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    },

   'sklearn.feature_selection.SelectFromModel': {
        'threshold': np.arange(0, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    }

}
    'sklearn.ensemble.GradientBoostingClassifier': {
        'n_estimators': [100],
        'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.],
        'max_depth': range(1, 11),
        'min_samples_split': range(2, 21),
        'min_samples_leaf': range(1, 21),
        'subsample': np.arange(0.05, 1.01, 0.05),
        'max_features': np.arange(0.05, 1.01, 0.05)
    },

    'sklearn.neighbors.KNeighborsClassifier': {
        'n_neighbors': range(1, 101),
        'weights': ["uniform", "distance"],
        'p': [1, 2]
    },

    'sklearn.svm.LinearSVC': {
        'penalty': ["l1", "l2"],
        'loss': ["hinge", "squared_hinge"],
        'dual': [True, False],
        'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
        'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.]
    },

    'sklearn.linear_model.LogisticRegression': {
        'penalty': ["l1", "l2"],
        'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.],
        'dual': [True, False]
    },

    'xgboost.XGBClassifier': {
        'n_estimators': [100],
        'max_depth': range(1, 11),
        'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.],
        'subsample': np.arange(0.05, 1.01, 0.05),
        'min_child_weight': range(1, 21),
        'nthread': [1]
    },

    # Preprocesssors
    'sklearn.preprocessing.Binarizer': {
        'threshold': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.decomposition.FastICA': {
        'tol': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.cluster.FeatureAgglomeration': {
        'linkage': ['ward', 'complete', 'average'],
        'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine', 'precomputed']
    },

    'sklearn.preprocessing.MaxAbsScaler': {
    },

    'sklearn.preprocessing.MinMaxScaler': {
    },

    'sklearn.preprocessing.Normalizer': {
        'norm': ['l1', 'l2', 'max']
    },

    'sklearn.kernel_approximation.Nystroem': {
        'kernel': ['rbf', 'cosine', 'chi2', 'laplacian', 'polynomial', 'poly', 'linear', 'additive_chi2', 'sigmoid'],
        'gamma': np.arange(0.0, 1.01, 0.05),
        'n_components': range(1, 11)
    },

    'sklearn.decomposition.PCA': {
        'svd_solver': ['randomized'],
        'iterated_power': range(1, 11)
    },

    'sklearn.preprocessing.PolynomialFeatures': {
        'degree': [2],
        'include_bias': [False],
        'interaction_only': [False]
    },

    'sklearn.kernel_approximation.RBFSampler': {
        'gamma': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.preprocessing.RobustScaler': {
    },

    'sklearn.preprocessing.StandardScaler': {
    },

    'tpot.built_in_operators.ZeroCount': {
    },

    # Selectors
    'sklearn.feature_selection.SelectFwe': {
        'alpha': np.arange(0, 0.05, 0.001),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            } # read from dependencies ! need add an exception in preprocess_args

    },

    'sklearn.feature_selection.SelectKBest': {
        'k': range(1, 100), # need check range!
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.SelectPercentile': {
        'percentile': range(1, 100),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.VarianceThreshold': {
        'threshold': np.arange(0.05, 1.01, 0.05)
    },

    'sklearn.feature_selection.RFE': {
        'step': np.arange(0.05, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    },

   'sklearn.feature_selection.SelectFromModel': {
        'threshold': np.arange(0, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    }

}
    # Preprocesssors
    'sklearn.preprocessing.Binarizer': {
        'threshold': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.decomposition.FastICA': {
        'tol': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.cluster.FeatureAgglomeration': {
        'linkage': ['ward', 'complete', 'average'],
        'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine', 'precomputed']
    },

    'sklearn.preprocessing.MaxAbsScaler': {
    },

    'sklearn.preprocessing.MinMaxScaler': {
    },

    'sklearn.preprocessing.Normalizer': {
        'norm': ['l1', 'l2', 'max']
    },

    'sklearn.kernel_approximation.Nystroem': {
        'kernel': ['rbf', 'cosine', 'chi2', 'laplacian', 'polynomial', 'poly', 'linear', 'additive_chi2', 'sigmoid'],
        'gamma': np.arange(0.0, 1.01, 0.05),
        'n_components': range(1, 11)
    },

    'sklearn.decomposition.PCA': {
        'svd_solver': ['randomized'],
        'iterated_power': range(1, 11)
    },

    'sklearn.preprocessing.PolynomialFeatures': {
        'degree': [2],
        'include_bias': [False],
        'interaction_only': [False]
    },

    'sklearn.kernel_approximation.RBFSampler': {
        'gamma': np.arange(0.0, 1.01, 0.05)
    },

    'sklearn.preprocessing.RobustScaler': {
    },

    'sklearn.preprocessing.StandardScaler': {
    },

    'tpot.built_in_operators.ZeroCount': {
    },

    # Selectors
    'sklearn.feature_selection.SelectFwe': {
        'alpha': np.arange(0, 0.05, 0.001),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            } # read from dependencies ! need add an exception in preprocess_args

    },

    'sklearn.feature_selection.SelectKBest': {
        'k': range(1, 100), # need check range!
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.SelectPercentile': {
        'percentile': range(1, 100),
        'score_func': {
            'sklearn.feature_selection.f_classif': None
            }
    },

    'sklearn.feature_selection.VarianceThreshold': {
        'threshold': np.arange(0.05, 1.01, 0.05)
    },

    'sklearn.feature_selection.RFE': {
        'step': np.arange(0.05, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    },

   'sklearn.feature_selection.SelectFromModel': {
        'threshold': np.arange(0, 1.01, 0.05),
        'estimator': {
            'sklearn.ensemble.ExtraTreesClassifier': {
                'n_estimators': [100],
                'criterion': ['gini', 'entropy'],
                'max_features': np.arange(0.05, 1.01, 0.05)
                }
        }
    }

}

Basic example

from tpot import TPOTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data.astype(np.float64),
    iris.target.astype(np.float64), train_size=0.8, test_size=0.2)

tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2, n_jobs=-1)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))



Optimization Progress:  33%|███▎      | 100/300 [00:25<02:36,  1.28pipeline/s]
Generation 1 - Current best internal CV score: 0.9833333333333334
Optimization Progress:  50%|█████     | 150/300 [00:39<00:58,  2.57pipeline/s]
Generation 2 - Current best internal CV score: 0.9833333333333334
Optimization Progress:  67%|██████▋   | 200/300 [00:52<00:28,  3.48pipeline/s]
Generation 3 - Current best internal CV score: 0.9833333333333334
Optimization Progress:  83%|████████▎ | 250/300 [01:05<00:10,  4.66pipeline/s]
Generation 4 - Current best internal CV score: 0.9833333333333334
                                                                              
Generation 5 - Current best internal CV score: 0.9916666666666668

Best pipeline: KNeighborsClassifier(Nystroem(input_matrix, Nystroem__gamma=0.4, Nystroem__kernel=linear, Nystroem__n_components=DEFAULT), KNeighborsClassifier__n_neighbors=12, KNeighborsClassifier__p=1, KNeighborsClassifier__weights=DEFAULT)
0.933333333333

Exporting

tpot.export('tpot_exported_pipeline.py')
import numpy as np

from sklearn.kernel_approximation import Nystroem
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline

# NOTE: Make sure that the class is labeled 'class' in the data file
tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64)
features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1)
training_features, testing_features, training_classes, testing_classes = \
    train_test_split(features, tpot_data['class'], random_state=42)

exported_pipeline = make_pipeline(
    Nystroem(gamma=0.4, kernel="linear"),
    KNeighborsClassifier(n_neighbors=12, p=1)
)

exported_pipeline.fit(training_features, training_classes)
results = exported_pipeline.predict(testing_features)

Titanic example

def load_and_clean(filename, encoders=None):
    """Read csv and perform basic labeling encoding"""
    
    df = pd.read_csv(filename)
    if not encoders:
        encoders = {'Sex': LabelEncoder(), 
                    'Cabin': LabelEncoder(), 
                    'Embarked': LabelEncoder()}
        for column, encoder in encoders.items():
            encoder.fit(list(df[column].astype(str)) + ['UnknownLabel'])
            df[column] = encoder.transform(df[column].astype(str))
    else:
        for column, encoder in encoders.items():
            df.loc[~df[column].isin(encoder.classes_), column] = 'UnknownLabel'
            df[column] = encoder.transform(df[column].astype(str))
        
    df = df.fillna(-999)
    passenger_ids = df['PassengerId']
    df = df.drop(['PassengerId', 'Name', 'Ticket'], axis=1)
    return df, encoders, passenger_ids

train, encoders, _ = load_and_clean('titanic/train.csv')

Titanic example

tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2,n_jobs=-1, 
                      scoring='accuracy', )
tpot.fit(train.drop('Survived', axis=1), train['Survived'])
Optimization Progress:  33%|███▎      | 100/300 [00:21<01:37,  2.05pipeline/s]
Generation 1 - Current best internal CV score: 0.8306115674694577
Optimization Progress:  50%|█████     | 150/300 [00:45<01:01,  2.43pipeline/s]
Generation 2 - Current best internal CV score: 0.8306115674694577
Optimization Progress:  67%|██████▋   | 200/300 [01:02<00:30,  3.32pipeline/s]
Generation 3 - Current best internal CV score: 0.8306115674694577
Optimization Progress:  83%|████████▎ | 250/300 [01:25<00:20,  2.38pipeline/s]
Generation 4 - Current best internal CV score: 0.8306115674694577
                                                                              
Generation 5 - Current best internal CV score: 0.8306115674694577

Best pipeline: 
XGBClassifier(RandomForestClassifier(input_matrix, RandomForestClassifier__bootstrap=True,
                                     RandomForestClassifier__criterion=entropy,
                                     RandomForestClassifier__max_features=0.85,
                                     RandomForestClassifier__min_samples_leaf=4,
                                     RandomForestClassifier__min_samples_split=13,
                                     RandomForestClassifier__n_estimators=100),
              XGBClassifier__learning_rate=0.5, XGBClassifier__max_depth=6, XGBClassifier__min_child_weight=20,
              XGBClassifier__n_estimators=DEFAULT, XGBClassifier__nthread=1, XGBClassifier__subsample=0.9)

Titanic example

from copy import copy
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.pipeline import make_pipeline, make_union
from sklearn.preprocessing import FunctionTransformer
from xgboost import XGBClassifier

exported_pipeline = make_pipeline(
    make_union(VotingClassifier([("est", RandomForestClassifier(bootstrap=True, criterion="entropy",
                                                                max_features=0.8500000000000001, min_samples_leaf=4,
                                                                min_samples_split=13, n_estimators=100))]),
               FunctionTransformer(copy)),
    XGBClassifier(learning_rate=0.5, max_depth=6, min_child_weight=20, nthread=1, subsample=0.9000000000000001)
)

TPOT accuracy: 0.8306

Kaggle accuracy: 0.7895

House prices example

def load_and_clean(filename, encoders=None):
    df = pd.read_csv(filename)
    if not encoders:
        encoders ={column: LabelEncoder() 
                   for column, column_type in df.dtypes.items() 
                   if str(column_type) == 'object'}
        for column, encoder in encoders.items():
            encoder.fit(list(df[column].astype(str)) + ['UnknownLabel'])
            df[column] = encoder.transform(df[column].astype(str))
    else:
        for column, encoder in encoders.items():
            df.loc[~df[column].isin(encoder.classes_), column] = 'UnknownLabel'
            df[column] = encoder.transform(df[column].astype(str))
    
    df = df.fillna(-999)
    ids = df['Id']
    df = df.drop(['Id'], axis=1)
    return df, encoders, ids

House prices example

tpot = TPOTRegressor(generations=5, population_size=50, verbosity=2, 
                     n_jobs=-1, scoring=rmserror_log)
tpot.fit(train.drop('SalePrice', axis=1), train['SalePrice'])
def rmserror_log(predictions, targets):
    return np.sqrt(((np.log(predictions) - np.log(targets)) ** 2).mean())
exported_pipeline = make_pipeline(
    make_union(VotingClassifier([("est", RidgeCV())]), FunctionTransformer(copy)),
    make_union(VotingClassifier([("est", ElasticNetCV(l1_ratio=0.4, tol=0.0001))]), 
                                FunctionTransformer(copy)),
    XGBRegressor(max_depth=4, min_child_weight=1, nthread=1, subsample=0.9000000000000001)
)
exported_pipeline.fit(train.drop('SalePrice', axis=1), train['SalePrice'])
results = exported_pipeline.predict(test)

With custom dict

tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2, n_jobs=-1,
                      scoring='accuracy', cv=10, config_dict={
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [100],
            'criterion': ["entropy"],
            'max_features': [0.85],
            'min_samples_split': [13],
            'min_samples_leaf': [4],
            'bootstrap': [True]
        },

        'xgboost.XGBClassifier': {
            'n_estimators': [100],
            'max_depth': [6],
            'learning_rate': [0.5],
            'subsample': [0.9],
            'min_child_weight': [20],
            'nthread': [1]
        },

        # Preprocesssors
        'sklearn.preprocessing.Binarizer': {
            'threshold': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.decomposition.FastICA': {
            'tol': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.cluster.FeatureAgglomeration': {
            'linkage': ['ward', 'complete', 'average'],
            'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine', 'precomputed']
        },

        'sklearn.preprocessing.MaxAbsScaler': {
        },
        
        'sklearn.preprocessing.MinMaxScaler': {
        },

        'sklearn.preprocessing.Normalizer': {
            'norm': ['l1', 'l2', 'max']
        },

        'sklearn.decomposition.PCA': {
            'svd_solver': ['randomized'],
            'iterated_power': range(1, 11)
        },

        'sklearn.preprocessing.PolynomialFeatures': {
            'degree': [2],
            'include_bias': [False],
            'interaction_only': [False]
        },

        'sklearn.kernel_approximation.RBFSampler': {
            'gamma': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.preprocessing.RobustScaler': {
        },

        'tpot.built_in_operators.ZeroCount': {
        },

        # Selectors
        'sklearn.feature_selection.SelectFwe': {
            'alpha': np.arange(0, 0.05, 0.001),
            'score_func': {
                'sklearn.feature_selection.f_classif': None
            } 

        },

Automated Machine Learning — A Paradigm Shift That Accelerates Data Scientist Productivity @ Airbnb

Questions?

Data science for lazy people... genetics will work for you!

By J. Diego Hueltes Vega

Data science for lazy people... genetics will work for you!

Data science is fun... right? Data cleaning, feature selection, feature preprocessing, feature construction, model selection, parameter optimization, model validation... oh wait... are you sure? What about automating 80% of the work using genetic algorithms that can make better choices than you? TPOT is a tool that automatically creates and optimizes machine learning pipelines.

  • 4,078