Data Visualisation

 

Brussels

20 February 2020

@maartenzam

DG EAC

Pitfalls, guidelines & journalistic techniques

On the menu

Intro to data visualisation: history and psychology

16 pitfalls in data visualisation

The Data visualisation Checklist

Journalistic techniques

Maarten Lambrechts?

Why visualisation?

Party Oct 2010 Sep 2012 May 2013 Oct 2013
N-VA 28,2 36,3 32,1 27,9
CD&V 17,6 18,5 17,4 19
SP.A 14,9 14,5 14,7 13,4
VB 12,6 9,5 10,6 10,6
VLD 14 10,7 10,1 13,8
Groen 7,1 7,9 9,5 10
LDD 3,7 1,3 0,4 1,3
PVDA 5 5 2,5 3,9
Andere 2 1,2 2,6 0,1

Explanatory data visualisation

Exploratory data visualisation

The secret

Preattentative processing

868888609462834719714449648
122286651978794222484779908
939340243123007392183390116
351684124962334339709749742
            868888609462834719714449648
122286651978794222484779908
939340243123007392183390116
351684124962334339709749742
            
            
            
            
            
        

16 datavisualisation pitfalls

Chart choosers

2. Don't cut bars

3. Don't cut time axes

4. Label directly

5. Use colors deliberately...

Make grey your best friend

... and consistently

7. Avoid chart junk

8. Scale circles by area

9. Tell the story

10. Double the axes, double the mischief

11. Correlation is not causality

12. Don't do 3D

Unless you are the New York Times

13. Sort on the data

14. Scale numbers on maps

15. Sometimes the best map is no map

16. All maps lie

Introducing:

de Datavisualization Checklist

Journalistic techniques in data communication

5W, 1H

Where?

When?

Who?

What?

Why?

How?

Context

Context

Character

Cause and effect

Sensemaking

The inverted pyramid

The News

important details

BackgrouND

Journalistic reality

Fixed length

Breaking news comes in

'When in doubt, leave things out'

'Cut from the bottom'

Put in real people

 

Personification

Homan Square

 

Use a narrator

Make it personal

Address the reader

Put the "you" in the headline

Storytelling with charts

"You have to be like the worst tabloid newspaper in the front and the Academy of Science in the back."

Hans Rosling

"The annotation layer is the most important thing we do. Otherwise it's a case of here it is, you go figure it out."

Amanda Cox, The New York Times

1 chart,

1 message

Data story patterns

Intersections

Outliers

Components

Repetition

Gradual visual reveal

Thank you!

slides.com/maartenzam/datavisualisation-dgeac

 

www.maartenlambrechts.be

@maartenzam

Visualisation | DG EAC

By maartenzam

Visualisation | DG EAC

  • 400
Loading comments...

More from maartenzam