"Advanced"

Functional Programming

For the absolute beginner

(a → F[b]) → F[a] → F[b]
(a -> b) → F[a] → F[b]
λx.x

Algebraic Data Types

> let a = (false, false);;

val a : bool * bool = (false, false)
> let b = (false, true);;

val b : bool * bool = (false, true)
> let c = (true, false);;

val c : bool * bool = (true, false)
> let d = (true, true);;

val d : bool * bool = (true, true)

Product Types

type Result = 
    | Success of int
    | Failure of string


let half x =
    if x % 2 = 0 then Success (x/2)
    else Failure "That's not an even number"


Sum Types

> half 8;;

val it : Result = Success 4

> half 7;;

val it : Result = Failure "That's not an even number"
val half : x:int -> Result

Object Inheritance Hierarchy

Lambda Calculus

λ

Lambda Calculus

The world's smallest universal programming language

<expression := <name> | <function> | <application>

 

<function> := λ<name>.<expression>

 

<application> := <expression><expression>

Lambda Calculus

Functions

λx.x
(λx.x)y
≡ y

Lambda Calculus

Application

(λxy.x)E1E2
E1
(λxy.x)E1
λy.E1
(λxy.y)E1E2
E2
(λxy.y)E1
λy.y

Lambda Calculus

Application

a b c d
((a b) c) d
> printf "%s" "Hello\n";;

Hello
val it : unit = ()
> printf "%s";;

val it : (string -> unit) = <fun:it@19-7>
> printf "%d";;

val it : (int -> unit) = <fun:it@20-8>

2 + 3 + 5 = 10

(2 + 3) + 5 = 10

2 + (3 + 5) = 10

2 + (3 + 5)
("Hello," + " ") + "World!"
([1; 2] @ [2; 3; 4]) @ [3; 4; 5] 
(2 + 3) + 5
"Hello," + (" " + "World!")
[1; 2] @ ([2; 3; 4] @ [3; 4; 5]) 

SEMIGROUP

So What?

2 + 3 = 5

2 + 0 = 2

n + 0 = n

Identity

2 * 3 = 6

2 * 1 = 2

n * 1 = n

Identity

MONOID

So What?

[1; 2; 3; 4; 5]

[2; 3; 4; 5; 6]

x → x + 1

List [Int]

List [Int]

Int → Int

List [Int]

List [String]

Int → String

F#

> List.map (fun x -> x + 1) [1; 2; 3];;

val it : int list = [2; 3; 4]
>>> [x + 1 for x in [1, 2, 3]]

[2, 3, 4]

Python

(map (fn [x] (+ x 1)) [1 2 3])

=> (2 3 4)

Clojure

λ map (+1) [1, 2, 3]

[2,3,4]

Haskell

λ [i+1 | i <- [1, 2, 3]]

[2,3,4]
>>> map (lambda x: x+1, [1, 2, 3])

[2, 3, 4]
for {x <- List(1, 2, 3)} yield x+1

List(2, 3, 4)

Scala

(fun a → b) → List[a] → List[b]
let currencyCodes = ["EUR"; "GBP"; "USD"; "CAD"; "JPY"]


let id x = x

let toLower (s: string) =
    s.ToLower()

let addPrefix s =
    "x." + s

List.map id currencyCodes
val it : string list = ["EUR"; "GBP"; "USD"; "CAD"; "JPY"]
List.map toLower currencyCodes
val it : string list = ["eur"; "gbp"; "usd"; "cad"; "jpy"]
List.map addPrefix currencyCodes
val it : string list = ["x.EUR"; "x.GBP"; "x.USD"; "x.CAD"; "x.JPY"]
(fun a → b) → List[a] → List[b]
currencyCodes
|> List.map toLower
|> List.map addPrefix

val it : string list = ["x.eur"; "x.gbp"; "x.usd"; "x.cad"; "x.jpy"]
> let listToLower = List.map toLower
val listToLower : (string list -> string list)
> let convertCode = toLower >> addPrefix
val convertCode : (string -> string)

> List.map convertCode currencyCodes
val it : string list = ["x.eur"; "x.gbp"; "x.usd"; "x.cad"; "x.jpy"]
> let convertCodes = listToLower >> listAddPrefix;;
val convertCodes : (string list -> string list)
> convertCodes currencyCodes;;
val it : string list = ["x.eur"; "x.gbp"; "x.usd"; "x.cad"; "x.jpy"]
> listToLower currencyCodes;;
val it : string list = ["eur"; "gbp"; "usd"; "cad"; "jpy"]

It's not just Lists

let codesByCountry = Map.ofList [
                        ("Ireland", "EUR") 
                        ("England", "GBP") 
                        ("Scotland", "GBP") 
                        ("United States", "USD") 
                        ("Canada", "CAD")
                        ("Japan", "JPY")
                        ("Switzerland", "CHF")                      
                       ]


codesByCountry.["Ireland"];;
val it : string = "EUR"
(fun a → b) → Option[a] → Option[b]
let findInMap map key =
    Map.tryFind key map


> let findCode = findInMap codesByCountry
val findCode : (string -> string option)
> findCode "Ireland"
val it : string option = Some "EUR"


> findCode "Australia"
val it : string option = None
> let irlCode = findCode "Ireland";;

val irlCode : string option = Some "EUR"
(fun a → b) → Option[a] → Option[b]
> let ausCode = findCode "Australia";;

val ausCode : string option = None


> Option.map convertCode ausCode;;

val it : string option = None
> Option.map toLower irlCode;;

val it : string option = Some "eur"
> Option.map addPrefix irlCode;;

val it : string option = Some "x.EUR"
> Option.map convertCode irlCode;;

val it : string option = Some "x.eur"
(fun a → b) → Option[a] → Option[b]
(fun a → b) → List[a] → List[b]
(fun a → b) → F[a] → F[b]

List.map

Option.map

fmap (aka map)

Functor

So What?

findCode: string → Option[string]

findCode: string → string

Composition

findRate: string → decimal

findRate: string → Option[decimal]

findCode >> findRate

✔︎

findCode >> findRate

Composition

let codesByCountry = Map.ofList [
                        ("Ireland", "EUR") 
                        ("England", "GBP") 
                        ("Scotland", "GBP") 
                        ("United States", "USD") 
                        ("Canada", "CAD")
                        ("Japan", "JPY")
                        ("Switzerland", "CHF")                      
                       ]


let rates = Map.ofList [
                        ("x.eur", 1M)
                        ("x.gbp", 0.78883M)
                        ("x.jpy", 123.94M)
                        ("x.usd", 1.13804M)
                        ("x.cad", 1.47397M)
                       ]


let findCode = findInMap codesByCountry
val findCode : (string -> string option)

let findRate = findInMap rates
val findRate : (string -> decimal option)
> Option.bind

val it : (('a -> 'b option) -> 'a option -> 'b option)
(fun a → Option[b]) → Option[a] → Option[b]
"United States"               // String
|> findCode                   // Option[String]
|> Option.map convertCode     // Option[String]
|> Option.bind findRate       // Option[Decimal]
val it : decimal option = Some 1.13804M
"Australia"
|> findCode
|> Option.map convertCode
|> Option.bind findRate

val it : decimal option = None
"Switzerland"
|> findCode
|> Option.map convertCode
|> Option.bind findRate

val it : decimal option = None
(fun a → Option[b]) → Option[a] → Option[b]
(fun a → List[b]) → List[a] → List[b]
(fun a → F[b]) → F[a] → F[b]

List.collect

Option.bind

bind (aka flatmap)

a → F[a] 

return (just wrap a value)

Monad

That's It?

Polymorphism

Inheritance

Easy to add new types, hard to add new behaviour

Parametric

Easy to add new behaviour, hard to add new types

Polymorphism

Typeclasses

Add behaviour to things who's code you don't have access to

Almost like duck typing, but behaviour only for those types for which a typeclass "instance" is available

Still type-safe, compiler checked

Advanced Functional Programming for the absolute beginner

By richardadalton

Advanced Functional Programming for the absolute beginner

  • 3,267