Carol Cuesta-Lazaro (IAIFI Fellow)

and Siddarth Mishra-Sharma (IAIFI Fellow)

Diffusion generative modelling for galaxy surveys

 

Initial Conditions of the Universe

Gaussian RF

Laws of gravity

3-D distribution of galaxies

Which are the ICs of OUR Universe?

Primordial non-Gaussianity?

3-D distribution of dark matter

Is GR modified on large scales?

How do galaxies form?

Neutrino mass hierarchy?

ML for the Large Scale Structure of the Universe:

Carol's wish list

Generative models

Learn p(x)

Evaluate the likelihood of a 3D map, as a function of the parameters of interest

1

Combine different galaxy properties (such as velocities and positions)

2

Sample 3D maps from the posterior distribution 

3

p(
)
|
\mathrm{Interesting}
\mathrm{parameters}
z_T
z_{0}
z_{1}
z_{2}
p(z_t|z_{t-1})

Reverse diffusion: Denoise previous step

Forward diffusion: Add Gaussian noise (fixed)

Diffusion models

A person half Yoda half Gandalf

q_\theta(z_{t-1}|z_t)
q_\theta(z_{t-1}|z_t) = \mathcal{N}(z_{t-1}|\mu_\theta(z_t), \sigma_t)
z_T
z_{0}
z_{1}

Diffusion on point clouds

z_{2}
q_\theta(z_{t-1}|z_t)
p(z_t|z_{t-1})

Reverse diffusion: Denoise previous step

Forward diffusion: Add Gaussian noise (fixed)

Cosmology

h_0
h_1
h_5
h_4
h_2
h_3
h_6

Node features coordinates (+mass, velocities)

Input

Noisy halo properties

Output

Noise prediction

Graph Neural Networks as score models

kNN (~20)

p(x,y,z, v_x, v_y, v_z, M_h|\Omega_m, \sigma_8)

Halo Mass Function

Velocity

PDF

Mean pairwise velocity

\mathcal{L}_T(x) = \sum_{i=1}^T \mathbb{E}_{q(z_{i}|x)} D_{KL} \left[q(z_{i-1} | z_{i}, x) || p_\theta(z_{i-1} | z_{i}) \right]
-\log p(x) \leq -\mathrm{VLB}(x)
D_{KL}(q(z_T|x) || p(z_T)) + \mathbb{E}_{q(z_0|x)} \left[-\log p(x|z_0) \right] + \mathcal{L}_T(x)

Prior loss

Diffusion loss

Reconstruction loss

Be a true Bayesian: Always maximise the likelihood

arxiv:2107.00630

arxiv:2303.00848

Maximum Likelihood = Denoising

Setting tight constraints with only 5000 halo positions

 

+ Galaxy formation

+ Observational systematics (Cut-sky, Fiber collisions)

+ Lightcone, Redshift Space Distortions....

Forward Model

N-body simulations

Observations

p(
)
|
\mathrm{Cosmology}

Optimise information on cosmological parameters

(robust) surprises

The challenge for field level inference

 

Copy of Copy of Copy of Copy of deck

By carol cuesta

Copy of Copy of Copy of Copy of deck

  • 285