
Anomaly Detection in Cosmology
Flatiron Institute
Institute for Advanced Studies
Carol(ina) Cuesta-Lazaro



1-Dimensional


Machine Learning
Secondary anisotropies
Galaxy formation
Intrinsic alignments



DESI / SphereX / Hetdex
Euclid / LSST
SO / CMB-S4
Ligo / Einstein


The era of Big Data Cosmology
xAstrophysics
HERA / CHIME
SAGA / MANGA




Galaxy formation
Emitters Census
Reionization


Cosmic Microwave Background
Galaxies / Dwarfs
21 cm
Galaxy Surveys
Gravitational Lensing
Gravitational Waves
AGN Feedback/Supernovae


Carolina Cuesta-Lazaro - IAS / Flatiron Institute
We have increasingly precise observations of the cosmos, but our biggest questions remain about what we can't directly observe


Dark Matter
Gas
Bullet Cluster
["DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations" arXiv:2404.03002]

Dark Energy is constant over time
Inflation
x5 times more collisionless matter than we can see
Dark Matter
Exponential expansion in the very early universe
Expansion is accelerating,
dynamical?
Dark Energy
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Dataset Size = 1
Can't poke it in the lab

Simulations
Bayesian statistics
But inference in Cosmology is hard
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Late Universe
Early Universe
Tension
From Tensions to Discoveries: Anomalies in Cosmology

Early vs Late
Parametric Extensions
[Image Credit: Prof. Wendy Freedman]
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Looking for what we don't know to look for
The missing pieces: Beyond parametric searches
Axion Dark Matter

Dark Matter - Baryon Interactions
Primordial Non-Gaussianity

Early Dark Energy
Dark Radiation
[Credit: Sandbox Studio]


[Credit: Sandbox Studio]

Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Observation
Question
Hypothesis
Testable Predictions
Gather data
Alter, Expand, Reject Hypothesis
Develop General Theories
[Figure adapted from ArchonMagnus] Simulators as theory models
The Scientific Method in 2025
High-dimensional data
Simulations: Testing Ground and Theoretical Models
Carolina Cuesta-Lazaro - IAS / Flatiron Institute










Astrophysics proliferates Simulation-based Inference
on Simulations
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
[Video credit: Francisco Villaescusa-Navarro]
Gas density
Gas temperature
Subgrid model 1
Subgrid model 2
Subgrid model 3
Subgrid model 4
New physics or pesky baryons?
We need to understand the baryons!
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Can we learn a general and continuous representation of Baryonic feedback?

Gas
Galaxies




Dark Matter
Baryonic fields
Marginalize over a broader set of subgrid physics
Interpolate between simulators
Mingshau Liu
(Ming)

Constrain z via multi-wavelength observations
Known Unknowns
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Trained on:
TNG, SIMBA, Astrid, EAGLE
Encoder



1) Encoder

Gas
Galaxies




Dark Matter
Baryonic fields
2) Probabilistic Decoder
Carolina Cuesta-Lazaro - IAS / Flatiron Institute



Dark Matter
Baryonic fields
(Test suite)
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Gas Density
Temperature
Astrid
EAGLE
Interpolating over Simulations
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Generalizing to unseen simulations: Magneticum



Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Aizhan Akhmetzhanova (Harvard)
["Detecting Model Misspecification in Cosmology with Scale-Dependent Normalizing Flows" Akhmetzhanova, Cuesta-Lazaro, Mishra-Sharma]

Unkown Unknowns
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Carolina Cuesta-Lazaro - IAS / Flatiron Institute


Carolina Cuesta-Lazaro - IAS / Flatiron Institute
["Detecting Model Misspecification in Cosmology with Scale-Dependent Normalizing Flows" Akhmetzhanova, Cuesta-Lazaro, Mishra-Sharma]

Base
OOD Mock 1
OOD Mock 2
Large Scales
Small Scales
Small Scales

OOD Mock 1
OOD Mock 2
Parameter Inference Bias (Supervised)
OOD Metric (Unsupervised)
Large Scales
Small Scales
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Anomaly Detection in Astrophysics
arXiv:2503.15312
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Can we separate Systematics from Physics?


Pablo Mercader

Daniel Muthukrishna

Jeroen Audenaert
Legacy Survey

HSC
DESI
SDSS
Same Object / Different Instrument
Different Object / Same Instrument
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Object 1


Object 2

Object 1
Back to the Playground!
Orientation + Scale
Number



Instrument 1
Instrument 1
Instrument 2
Instrument Encoder
Object Encoder
Instrument Pair
Object Pair
Instrument Pair
Object Pair
Carolina Cuesta-Lazaro - IAS / Flatiron Institute





Ground Truth
Instrument Pair
Object Pair
Recon
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Observation
Question
Hypothesis
Testable Predictions
Gather data
Alter, Expand, Reject Hypothesis
Develop General Theories
[Figure adapted from ArchonMagnus] The Scientific Method in > 2025
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Simulations in Foundation Models for Science
Simulated Data
Observed Data
Alignment Loss
Reconstruction
Alignment
(OT / Adversarial)
Shared Decoder
Observed Reconstructed
Simulated Reconstructed
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

A Toy Model Example


Idealized Simulations
Observations
+ Scale Dependent Noise
+ Bump
Carolina Cuesta-Lazaro - IAS / Flatiron Institute

Amplitude
Tilt
Tilt
Robust SBI from Shared

Visualizing Information Split
Carolina Cuesta-Lazaro - IAS / Flatiron Institute
Phystat-AnomalyDetection-2025
By carol cuesta
Phystat-AnomalyDetection-2025
- 6