Generative Solutions for Cosmic Problems

florpi

https://florpi.github.io/

IAIFI Fellow

Carol(ina) Cuesta-Lazaro

1. Probabilistic debiasing of the cosmic web

2. Physical priors on EFT bias parameters

3. How would a Machine learn a "bias expansion"?

Outline

Inference a la gradient descent

Base Distribution

Target Distribution

Bridging two distributions

z \sim p(z)
p(z)
x \sim p(x)
p(x)
\mathcal{L}_\phi = -\sum_i \log p_\phi(x_i)

Make the data as likely as possible

Prompt

A person half Yoda, half Gandalf

p_\phi(\rho_\mathrm{DM}|\rho_\mathrm{Galaxies})

1 to Many:

["Debiasing with Diffusion: Probabilistic reconstruction of Dark Matter fields from galaxies" 
Ono et al arXiv:2403.10648]

 

Victoria Ono

Core Park

1. From Galaxies to Dark Matter

Truth

Sampled

Observed

Small

Large

Scale (k)

Power Spectrum

Small

Large

Scale (k)

Cross correlation

TNG-300

True DM

Inferred DM

Size of training simulation

Galaxy Cluster

Void

 [arXiv:2403.10648]

 

Model trained on Astrid subgrid model

["3D Reconstruction of Dark Matter Fields with Diffusion Models: Towards Application to Galaxy Surveys" 
Park, Mudur, Cuesta-Lazaro et al (in-prep)]

 

Posterior Sample

Posterior Mean

Debiasing Cosmic Flows

[Video credit: Francisco Villaescusa-Navarro]

Gas density

Gas temperature

Subgrid model 1

Subgrid model 2

Subgrid model 3

Subgrid model 4

2. But, Simulations are nonsense?

Mikhail Ivanov

Robust galaxy bias model: Effective field Theories 

+ Simulation as priors

p(b)
p(\mathrm{Galaxies}|b)

Field-level EFT

["Full-shape analysis with simulation-based priors: constraints on single field inflation from BOSS" 
Ivanov, Cuesta-Lazaro et al arXiv:2402.13310]

 

Andrej Obuljen

Michael Toomey

["Full-shape analysis with simulation-based priors: cosmological parameters and the structure growth anomaly" 
Ivanov, Obuljen, Cuesta-Lazaro, Toomey arXiv:2409.10609]

 

p(\mathrm{HOD}|b)
\Omega_m, \sigma_8

Simulator 1

Simulator 2

z
p(
, z)

Dark Matter

Feedback

\Omega_m, \sigma_8

i) Contrastive

3. Learning the feedback manifold

Baryonic fields

ii) Generative

Baryonic fields

Dark Matter

Generative model

Total matter, gas temperature,

gas metalicity

p(
)
, z)
p(
z = f_\theta (
)

Encoder

+
p(\mathcal{C},z|
)
z

1. Probabilistic debiasing of the cosmic web

2. Physical priors on EFT bias parameters

3. How would a Machine learn a "bias expansion"?

Mock Barcelona

By carol cuesta

Mock Barcelona

  • 102