Machine Learning solutions for Cosmic Problems

IAIFI Fellow, MIT / Center for Astrophysics

Carolina Cuesta-Lazaro

Symmetries, Feedback and Controllable simulations

1-Dimensional

Machine Learning

Secondary anisotropies

Galaxy formation

Intrinsic alignments

DESI, DESI-II, Spec-S5

Euclid / LSST

Simons Observatory

CMB-S4

Ligo

Einstein

The era of Big Data Cosmology

xAstrophysics

5-Dimensional

w_0, w_a, f\sigma_8, \Omega_m, \sum m_\nu

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Generative models as Fast Emulators + Likelihood Estimators

Reconstructing Dark Matter

["A point cloud approach to generative modeling for galaxy surveys at the field level" 
Cuesta-Lazaro and Mishra-Sharma 

ICML AI4Astro 2023, arXiv:2311.17141]

["3D Reconstruction of Dark Matter Fields with Diffusion Models: Towards Application to Galaxy Surveys" 
Park, Mudur, Cuesta-Lazaro et al ICML 2024 AI for Science]

 

Astrophysics dominates Simulation-based Inference

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

on Simulations

Symmetry preserving architectures

Defining a continuous latent space for feedback

Prompting simulators

Controllable

Simulators

3

Continuous fields

1

Inductive Biases

Learning to represent feedback

2

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

The cost of cosmological simulations

AbacusSummit

330 billion particles in 2 Gpc/h volume

\mathcal{O}(100)

60 trillion particles

~ 8TBs per simulation

15M CPU hours

(TNG50 ~100M cpu hours)

\mathcal{O}(10^4)

ML Requirements

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

["A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing" 
Balla, Mishra-Sharma, Cuesta-Lazaro et al
NeurIPs 2024 NuerReps arXiv:2410.20516]

 

E(3) Equivariant architectures

Benchmark models

["Geometric and Physical Quantities Improve E(3) Equivariant Message Passing" 
Brandstetter et al
arXiv:2110.02905]

 

Symmetry-preserving ML

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

The bitter lesson by Rich Sutton

The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin. [...]

 

methods that continue to scale with increased computation even as the available computation becomes very great. [...]

 

We want AI agents that can discover like we can, not which contain what we have discovered.

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

["A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing" 
Balla, Mishra-Sharma, Cuesta-Lazaro et al
NeurIPs 2024 NuerReps arXiv:2410.20516]

 

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

(MSE errors in units of 1e-3)

Memory scaling point clouds and voxels

h_0
h_1
h_5
h_4
h_2
h_3
h_6
e_{01}
e_{12}

Graph

\mathcal{O}(10^6)
\mathcal{O}(10^8)

Nodes

Edges

3D Mesh

\mathcal{O}(10^{10})

Voxels

Both data representations scale badly with increasing resolution

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Representing Continuous Fields

(x,y,z,t)
\Psi
\dot \Psi

Continuous in space and time

x500 Compression!

Can we store a simulation inside a neural network?

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Representation Learning

Informative abstractions of the data

Transfer learning beyond LCDM

Cosmic web Anomaly Detection

Representing baryonic feedback

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Representation Learning a la gradient descent

Contrastive

Generative

inductive biases

from scratch or from partial observations

Students at MIT are

OVER-CAFFEINATED

NERDS

SMART

ATHLETIC

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

\Omega_m, \sigma_8

Simulator 1

Simulator 2

z
p(
, z)

Dark Matter

Feedback

\Omega_m, \sigma_8

i) Contrastive

Learning the feedback manifold

Baryonic fields

ii) Generative

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Baryonic fields

Dark Matter

Generative model

Total matter, gas temperature,

gas metalicity

p(
)
, z)
p(
z = f_\theta (
)

Encoder

+

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

p(\mathcal{C},z|
)
z

X-Ray

 

 

Gas mass fractions

Gas density profiles

Sunyaev-Zeldovich

Galaxy Properties

Thermal Integrated electron pressure (hot electrons)

Star formation + histories

Stellar mass / halo mass relation

Multi-wavelength observations

FRBs

Integrated electron density

Kinetic Integrated electron density x peculiar velocity

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Reconstructing dark matter back in time

Stochastic Interpolants

NF

p(\delta_\mathrm{ICs}, \theta|\delta_\mathrm{Obs}) =
p(\delta_\mathrm{ICs}|\delta_\mathrm{Obs})
p(\theta|\delta_\mathrm{ICs},\delta_\mathrm{Obs})
["Joint cosmological parameter inference and initial condition reconstruction with Stochastic InterpolantsCuesta-Lazaro, Bayer, Albergo et al 
NeurIPs 2024 ML for the Physical Sciences]

 

Adrian Bayer

Mount Fuji?

Chirag Modi

\frac{dx_t}{dt} = v^\phi_t(x_t)
x_1 = x_0 + \int_0^1 v^\phi_t(x_t) dt
\frac{d p(x_t)}{dt} = - \nabla \left( v^\phi_t(x_t) p(x_t) \right)

Continuous time Normalizing Flows

Continuity Equation

Loss requires solving an ODE!

Diffusion, Flow matching, Interpolants... All ways to avoid this at training time

[Image Credit: "Understanding Deep Learning" Simon J.D. Prince]

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

\frac{dx_t}{dt} = v_\theta(t,x_t)
= (1-t)x_0 + t x_1
v(t,x_t) = \mathbb{E}\left[\partial_t I | x_t=x \right]

Can we regress the velocity field directly?

Turned maximum likelihood into a regression problem!

I(t,x_0,x_1) = x_t = \alpha_t x_0 + \beta_t x_1
\mathcal{L} = \int_0^1 \mathbb{E}_{x_0,x_1} \left[v_\theta(t, x_t) - \partial_t I(t,x_0,x_1) \right] ^2 dt

Interpolant

+ \gamma_t z

Stochastic Interpolant

Expectation over all possible paths that go through xt

["Stochastic Interpolants: A Unifying framework for flows and diffusion" 
Albergo et al arXiv:2303.08797]

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

p(x_1|x_0)
x_0

?

x_1
s
["Probabilistic Forecasting with Stochastic Interpolants and Foellmer Processes" 
Chen et al arXiv:2403.10648 (Figure adapted from arXiv:2407.21097)]

 

Generative SDE

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Cross-Correlation True ICs | Pred ICs

Guided simulations with fuzzy constraints

Simulate what you need

(and sometimes what you want)

p(\delta_\mathrm{ICs}| \mathrm{Condition})

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

2. A general representation for baryonic feedback may inform galaxy formation modelling

Conclusions

Can we constrain it through multi-wavelength observations?

1. Inductive biases in cosmology can greatly improve constraints

Symmetry preserving architectures: + constraining power and simulation efficiency

Continuous fields: memory efficient data representations and compression methods

3. Cosmological field level inference can be made efficient with generative models

Can generally make simulators more controllable!

Carolina Cuesta-Lazaro IAIFI/MIT @ Flatiron 2024

Flatiron2024

By carol cuesta

Flatiron2024

  • 26