Index of refraction

Optics

Refraction

Snell's Law

Optics

Refraction

Find an expression for the displacement of a ray through a slab of material in terms of the slab's thickness, the material's refractive index and the angle of incidence.

Applying Snell's Law at both interfaces, taking the refractive index of air to be 1.

\sin\theta_1=n\ \sin\theta_2
n\ \sin\theta_3= \sin\theta_4

Since the two interfaces are parallel, therefore so are the lines normal to those surfaces. Therefore, the alternate angles are equal:

\theta_2= \theta_3
\theta_1= \theta_4

Implying that all four terms in the equations above are equal, leading to:

From triangle ABC, BC is 

\bar{BC}=d\ \tan\theta_2

From triangle ABD, BD is 

\bar{BD}=d\ \tan\theta_1

From triangle CED, CE is 

\delta=\bar{CE}=\bar{CD}\ \cos\theta_4
=(d\ \tan\theta_1-d\ \tan\theta_2)\cos\theta_4
=d\left(\ \frac{\sin\theta_1}{\cos\theta_1}-\ \frac{\sin\theta_2}{\cos\theta_2}\right)\cos\theta_1
=d\left(\ \frac{\sin\theta_1}{\cos\theta_1}-\ \frac{\sin\theta_2}{\cos\theta_2}\right)\cos\theta_4
\delta=d\left(\ \frac{\sin\theta_1}{\cos\theta_1}-\ \frac{\sin\theta_1}{n\cos\theta_2}\right)\cos\theta_1
=d \sin\theta\left(\ 1-\ \frac{\cos\theta}{n\cos(\sin^{-1}(\tfrac{\sin \theta}{n}))}\right)

Substituting the relationships found from Snell's Law:

For small angles of incidence and refractive indexes, the cosines are almost equal, thus:

\delta \approx d \sin\theta\left(\ 1-\ \frac{1}{n}\right)

Solved numerical example:

Total Internal Reflection

Optics

Refraction

Dispersion

Optics

Refraction

Lenses

Optics

Refraction

Lenses in combination

Optics

Refraction

The Human Eye

Optics

Refraction

Lens Abberations

Optics

Refraction

Optics - Refraction

By drmoussaphysics

Optics - Refraction

  • 170