All decks Close
All decks 18
  • Prompt Inversion using Diffusion LLMs

  • Lectures 15,16,17: Diffusion Models

  • Oral Qualifying Exam - Naresh

    My Oral Qualifying Examination slides

  • Lectures 13,14 : AutoEncoders, VAEs, CVAEs, GANs, CGANs

  • Lecture 12: Intro to GenAI: Data Distribution

  • Lecture 10,11: Learning-based (Data driven) Computer Vision with Neural Networks

  • Lecture 9: Feature Detection and Extraction

  • Session 1: VAE Recap

  • Lectures 6,7,8: Stereo Vision and Depth Estimation

  • Lecture 5: Image Processing (Fourier Domain)

  • Lecture 4: Image Processing (Image Transformations)

  • Lectures 2,3 : Image Formation and the Pinhole Camera

  • Lecture 1: What is an Image?

  • Convolutional Neural Networks

  • Lecture 0: Course Logistics and Syllabus

  • Unlearnable Samples in Diffusion Models

    Work accepted at ACM MM 2025 🎉

  • Invited talk on T2I Watermarking: UMBC

  • Diffusion-guest-lecture-1