Competition of trivial and topological phases in graphene based hybrid systems

Zoltán Tajkov

PhD Student

Department of Biological Physics, Eötvös Loránd University

Seminar of Condensed Matter Theory Groups in Regensburg

19. May, 2021.

Graphene is ...

A. K. Geim, I. V. Grigorieva Nature  499, 419 (2013)

Graphene is ...

... a good template!

A. K. Geim, I. V. Grigorieva Nature  499, 419 (2013)

Graphene is ...

... a good template!

A. K. Geim, I. V. Grigorieva Nature  499, 419 (2013)

How can we induce topological phase into graphene?

Graphene is ...

... a good template!

C. L. Kane, E. J. Mele, PRL 95, 226801 (2005)

How can we induce topological phase into graphene?

SOC!!

J. Sichau et. al. PRL 122, 046403 (2019) 

How strong is the effect?

SOC!!

Intrinsic spin-orbit coupling is weak in graphene!

\Delta E_{\mathrm{SOI}}=\left( 42.2 \pm 0.8 \right) \mu \mathrm{eV}

BiTeX: giant SOC

Ishizaka et al. Nature Materials 10, 521 (2011)

BiTeX monolayer

Fülöp et al. 2D Mater. 5, 031013 (2018)

BiTeX/graphene heterostructures

BiTeI sandwich: Kou et al. ACS Nano, 8 10448 (2014)

BiTeX/graphene heterostructures

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

DFT (SIESTA) results

topological

trivial

Sandwich:

~40 meV topological gap

One sided:

~1 meV trivial gap

Mechanical distortions

in graphene

 Weiss et al. Advanced Materials, 24 5782(2012)

Pressure→I, inplane strain →TI !?!

Z. Tajkov et al. Appl. Sci.  9, 4330 (2019)

BiTeBr

BiTeCl

BiTeI

BiTeI is different, why?

More DFT!!

Why does BiTeI behave differently?

Z. Tajkov et al. Appl. Sci.  9, 4330 (2019)

BiTeCl / BiTeBr, graphene

BiTeI, graphene

\(E_\mathrm{F} \) for graphene

\(E_\mathrm{F} \) for BiTeX

WF are different!

  • Graphene: 4.6 eV 
  •  BiTeCl/Br: 4.7–4.5 eV
  • BiTeI          : 5.1 eV

Effective model and fit

t_1+i\vec{m_1}\cdot\vec{\sigma}
t_2+i\vec{m_2}\cdot\vec{\sigma}
t_3+i\vec{m_3}\cdot\vec{\sigma}
im_z\sigma_z
=\mathrm{e}^{-\beta\left(l/l_0-1\right)}

TB model predicts phase transition well!

topological

trivial

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

What did we learn from DFT?

The most important parameters

Kekulé

Kane-Mele

Strain promotes SOC \( \rightarrow \) TI

Technical details of the model

We have to deal with:

  • Graphene
  • Kekulé
  • Kene-Male
  • Strain

Divide et impera

Start with graphene + strain

\boldsymbol{a}_{2,1} =a_{\mathrm{cc}}\frac{1}{2}\left(\begin{array}{c} \pm\sqrt{3}\\ 3 \end{array}\right)
\boldsymbol{b}_{2,1} =\left(\begin{array}{c} \pm\frac{2\sqrt{3}}{3a_{\mathrm{cc}}}\pi\\ \frac{2}{3a_{\mathrm{cc}}}\pi \end{array}\right)
\boldsymbol{\delta}_{1}=\left(\begin{array}{c} 0\\ -1 \end{array}\right) \\ \boldsymbol{\delta}_{2}=\frac{1}{2}\left(\begin{array}{c} \sqrt{3}\\ 1 \end{array}\right)\\ \boldsymbol{\delta}_{3}=\frac{1}{2}\left(\begin{array}{c} -\sqrt{3}\\ 1 \end{array}\right) \\
d_{1}=t_{0}\mathrm{e}^{-\beta\left(\frac{|\left(\boldsymbol{\varepsilon}+1\right)\boldsymbol{\delta}_{1}|}{a_{0}}-1\right)} \\ d_{2}=t_{0}\mathrm{e}^{-\beta\left(\frac{|\left(\boldsymbol{\varepsilon}+1\right)\boldsymbol{\delta}_{2}|}{a_{0}}-1\right)} \\ d_{3}=t_{0}\mathrm{e}^{-\beta\left(\frac{|\left(\boldsymbol{\varepsilon}+1\right)\boldsymbol{\delta}_{3}|}{a_{0}}-1\right)}
\boldsymbol{\varepsilon}=\varepsilon\left(\begin{array}{cc} \mathrm{cos}^{2}\theta-\rho\mathrm{sin^{2}\theta} & \left(1+\rho\right)\mathrm{cos}\theta\mathrm{sin}\theta\\ \left(1+\rho\right)\mathrm{cos}\theta\mathrm{sin}\theta & \mathrm{sin^{2}\theta}-\rho\mathrm{cos}^{2}\theta \end{array}\right)
t_0 = 2.7\, \mathrm{eV}
\beta \approx 3

Technical details of the model

Tight-binding model for pristine graphene

In real space:

\left|\alpha,\underline{m}\right\rangle =\left|\alpha\right\rangle \left|\underline{m}\right\rangle ,\ \left|A\right\rangle =\left(\begin{array}{c} 1\\ 0 \end{array}\right),\ \left|B\right\rangle =\left(\begin{array}{c} 0\\ 1 \end{array}\right)
\hat{H}_\mathrm{Gr}=\sum_{\underline{m}} d_1\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}\right|+ d_2\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}+\boldsymbol{a}_1\right| + d_3\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}+\boldsymbol{a}_2\right|+\text{h.c.}
\boldsymbol{R}_{\underline{m}}=m_{1}\boldsymbol{a}_{1}+m_{2}\boldsymbol{a}_{2}=\underline{m}\cdot\underline{\boldsymbol{a}}

Consider the Kekulé pattern as an ordered disorder

Technical details of the model

Kekulé perturbation operator

The periodicity is different!

\hat{H}_\mathrm{KeK} =\Delta\sum_{\underline{M}} d_{2} \left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right| \\ + d_{3}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right| \\ +d_{1}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|\\ +d_{1}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right| \\ +d_{2}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}+\boldsymbol{a}_{1}\right|\\ +d_{3}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}+\boldsymbol{a}_{1}\right| +\text{h.c.}

In real space:

\mathbf{A}_{1}=2\mathbf{a}_{1}-\mathbf{a}_{2}\qquad\mathbf{A}_{2}=-\mathbf{a}_{1}+2\mathbf{a}_{2}.

Technical details of the model

Kene-Male perturbation operator

The periodicity is different!

\hat{H}_\mathrm{SOI}=\frac{im}{\sqrt{3}}\sum_{\underline{M}}\left(d_{4}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|+\right. \\ d_{6}\left|B,\underline{M} \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right|+ \\ d_{5}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}\right|+\\ d_{5}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right|+ \\ d_{4}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right|+ \\ \left.d_{6}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|\right)+\text{h.c.}.

In real space:

\mathbf{A}_{1}=2\mathbf{a}_{1}-\mathbf{a}_{2}\qquad\mathbf{A}_{2}=-\mathbf{a}_{1}+2\mathbf{a}_{2}.

Technical details of the model

The full tight-binding Hamiltonian:

\hat{H}=\hat{H}_\mathrm{Gr}+\hat{H}_\mathrm{Kek}+\hat{H}_\mathrm{SOI}
\hat{H}_\mathrm{Gr}=\sum_{\underline{m}} d_1\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}\right| \\ + d_2\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}+\boldsymbol{a}_1\right| \\ + d_3\left|B,\underline{m}\right\rangle \left\langle A,\underline{m}+\boldsymbol{a}_2\right|+\text{h.c.}
\hat{H}_\mathrm{KeK} =\Delta\sum_{\underline{M}} d_{2} \left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right| \\ + d_{3}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right| \\ +d_{1}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|\\ +d_{1}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right| \\ +d_{2}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}+\boldsymbol{a}_{1}\right|\\ +d_{3}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}+\boldsymbol{a}_{1}\right| +\text{h.c.}
\hat{H}_\mathrm{SOI}=\frac{im}{\sqrt{3}}\sum_{\underline{M}}\left(d_{4}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|+\right. \\ d_{6}\left|B,\underline{M} \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right|+ \\ d_{5}\left|B,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle B,\underline{M}\cdot \underline{\boldsymbol{A}}\right|+\\ d_{5}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right|+ \\ d_{4}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right|+ \\ \left.d_{6}\left|A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{2}\right\rangle \left\langle A,\underline{M}\cdot \underline{\boldsymbol{A}}+\boldsymbol{a}_{1}\right|\right)+\text{h.c.}.

Technical details of the model

Dispersion relation \( \rightarrow \) Fourier-transformation

\left|B,\underline{m}\right\rangle =\frac{1}{\sqrt{N}}\sum_{\boldsymbol{k}}\mathrm{e}^{i\boldsymbol{k}\boldsymbol{R_{\underline{m}}}}\left|B,\boldsymbol{k}\right\rangle, \\ \left|A,\underline{m}\right\rangle =\frac{1}{\sqrt{N}}\sum_{\boldsymbol{k}}\mathrm{e}^{i\boldsymbol{k}\left(\boldsymbol{R_{\underline{m}}}+\boldsymbol{\delta}_{1}\right)}\left|A,\boldsymbol{k}\right\rangle

Fourier-transformation is tricky...

\boldsymbol{K}_{\pm}=\frac{2\boldsymbol{b}_{1}+\boldsymbol{b}_{2}}{3},\frac{2\boldsymbol{b}_{2}+\boldsymbol{b}_{1}}{3}\\ \mathbf{G}=\boldsymbol{K}_{+}-\boldsymbol{K}_{-}=\frac{\mathbf{b}_{1}-\mathbf{b}_{2}}{3}

Technical details of the model

\sum_{\boldsymbol{k},\boldsymbol{k}'}\sum_{m_{1},m_{2}}\left|B,\boldsymbol{k}\right\rangle \left\langle A,\boldsymbol{k}'\right|\mathrm{e}^{-i\left(\boldsymbol{k}'-\boldsymbol{k}\right)\left(m_{1}\left(2\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)+m_{2}\left(2\boldsymbol{a}_{2}-\boldsymbol{a}_{1}\right)\right)}=
\sum_{\boldsymbol{k},\boldsymbol{k}'}\left|B,\boldsymbol{k}\right\rangle \left\langle A,\boldsymbol{k}'\right|\frac{1}{3}\left(\delta_{\boldsymbol{k}\boldsymbol{k}'}+\delta_{\boldsymbol{k}\boldsymbol{k}'+\boldsymbol{G}}+\delta_{\boldsymbol{k}\boldsymbol{k}'-\boldsymbol{G}}\right)

Technical details of the model

After the FT

\hat{H}(\boldsymbol{k})=\underline{\Psi}_{\boldsymbol{k}}^{\dagger}\left(\begin{matrix} \boldsymbol{\Omega} & \boldsymbol{\Gamma} \\ \boldsymbol{\Gamma}^\dagger & -\boldsymbol{\Omega}^\dagger \\ \end{matrix} \right)\underline{\Psi}_{\boldsymbol{k}}
\underline{\Psi}_{\boldsymbol{k}}=\left(\begin{array}{cccccc} \left|B,\boldsymbol{k}\right\rangle & \left|B,\boldsymbol{k}+\boldsymbol{G}\right\rangle & \left|B,\boldsymbol{k}-\boldsymbol{G}\right\rangle & \left|A,\boldsymbol{k}\right\rangle & \left|A,\boldsymbol{k}+\boldsymbol{G}\right\rangle & \left|A,\boldsymbol{k}-\boldsymbol{G}\right\rangle \end{array}\right)

\( \boldsymbol{\Omega} \) and \( \boldsymbol{\Gamma} \)  are ugly \(  3\times3 \) matrices.

Identify low-energy part:

\Psi_\boldsymbol{k}=\left(-\left| A, \boldsymbol{k}+ \boldsymbol{G} \right. \rangle \left|B,\boldsymbol{k}-G\right.\rangle \left|B,\boldsymbol{k}+G\right.\rangle \left|A,\boldsymbol{k}+G\right.\rangle \right)

 Taylor expansion, momentum and strain are the small parameters

Technical details of the model

 Taylor expansion, momentum and strain are the small parameters, where to expand?

 G. G. Naumis et. al. PRB, vol. 99, no. 3, 035411, 2019

\mathbf{K}_D = \pm \left( \mathbf{G} + \mathbf{A} \right)

F. Guinea, et. al. Physics Reports,vol. 496, no. 109148, 2010.

A_x = \frac{\beta}{2a_{cc}}\left( \epsilon_{xx} - \epsilon_{yy} \right) \\ A_y = -\frac{\beta}{a_{cc}} \epsilon_{xy}

Technical details of the model

The low-energy Hamiltonian

\hat{H}\left(\boldsymbol{k}\right)=-\frac{3}{2}t\left(1+\frac{2\Delta}{3}\right)\left[\boldsymbol{\sigma}\boldsymbol{A}\otimes\tau_{z}+\boldsymbol{\sigma}\left(\boldsymbol{1}+\left(1-\beta\right)\boldsymbol{\varepsilon}\right)\boldsymbol{k}\otimes\tau_{0}\right]-\\[0.5em] \frac{t\Delta}{2}\left[\left(\beta\mathrm{Sp}\left(\boldsymbol{\varepsilon}\right)-2\right)\sigma_{z}\otimes\tau_{x}+(\boldsymbol{A}\times\boldsymbol{k})_{z}\sigma_{0}\otimes\tau_{y}+\boldsymbol{A}\boldsymbol{k}\sigma_{0}\otimes\tau_{x}\right]+\\[0.5em] m\left[\boldsymbol{A}\boldsymbol{k}\sigma_{z}\otimes\tau_{z}-\left(\frac{1}{2}\beta\mathrm{Tr}\left(\varepsilon\right)-1\right)\sigma_{z}\otimes\tau_{0}\right]-\\[0.5em] m\left[\left(\begin{array}{cc} (\boldsymbol{M}\boldsymbol{k})_{x}-i(\boldsymbol{M}\boldsymbol{k})_{y}\\[0.5em] (\boldsymbol{M}^{*}\boldsymbol{k})_{x}+i(\boldsymbol{M}^{*}\boldsymbol{k})_{y} \end{array}\right)+\left[\left(1+\boldsymbol{\varepsilon}\right)\boldsymbol{k}\right]\boldsymbol{\sigma}\right]\otimes\tau_{x},
\boldsymbol{A}=\frac{\beta}{2a_{0}}\varepsilon\left(1+\rho\right)\left(\begin{matrix} \cos^2\vartheta\\ -\sin^2\vartheta \end{matrix}\right)
\Psi_\boldsymbol{k}=\left(-\left| A, \boldsymbol{k}+ \boldsymbol{G} \right. \rangle \left|B,\boldsymbol{k}-G\right.\rangle \left|B,\boldsymbol{k}+G\right.\rangle \left|A,\boldsymbol{k}+G\right.\rangle \right)
\begin{array}{c} \hat{H}=-v\left( {\boldsymbol{k}}\cdot\boldsymbol{\sigma}\otimes\tau_{0} +\boldsymbol{A}\cdot\boldsymbol{\sigma}\otimes\tau_{z} \right)\\ +\Delta\sigma_z\otimes\tau_x -m\sigma_z\otimes\tau_0 \end{array}
\boldsymbol{A}=\underbrace{\frac{\beta}{2a_{0}}\varepsilon\left(1+\rho\right)}\left(\begin{array}{r} \cos2\vartheta\\ -\sin2\vartheta \end{array}\right)
|\xi|=\sqrt{\Delta^2-m^2}
\xi/v

Strain can close the gap at \(\boldsymbol{k}=\boldsymbol{0}\) if

Minimal model

Gamayun et al. New J. Phys. 20, 023016 (2018)

Z. Tajkov et. al. Physical Review B 101 (23), 235146 (2020)

\Psi_\boldsymbol{k}=\left(-\left| A, \boldsymbol{k}+ \boldsymbol{G} \right. \rangle \left|B,\boldsymbol{k}-G\right.\rangle \left|B,\boldsymbol{k}+G\right.\rangle \left|A,\boldsymbol{k}+G\right.\rangle \right)

Strain kills Kekulé but KM gap is resilient!

 

\Delta=0; m=0.2
\Delta=0.2; m=0
\Delta = 0.2; m=0.1
\Delta = 0.1; m=0.2

The Team

László Oroszlány

János Koltai

József Cserti

Thanks!

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

Z. Tajkov et al. Appl. Sci.  9, 4330 (2019)

Z. Tajkov et al. Physical Review B 101 (23), 235146 (2020)

Competition of trivial and topological phases in graphene based hybrid systems - Regensburg

By novidad21

Competition of trivial and topological phases in graphene based hybrid systems - Regensburg

  • 560