Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles

Centre for Energy Research, Institute of Technical Physics and Materials Science

Zoltán Tajkov

outline

$$ E $$

$$ E $$

Insulator?

Topology?

$$ \frac{1}{2\pi}\int K \mathrm{d}A = 2(1-g) $$

$$ \frac{1}{2\pi}\int K \mathrm{d}A = 2(1-g) $$

Su-Schrieffer-Heeger

H_{\mathrm{fin.}}=\begin{pmatrix} 0 & v & 0 & 0 & 0 & 0 \\ v & 0 & w & 0 & 0 & 0 \\ 0 & w & 0 & v & 0 & 0 \\ 0 & 0 & v & 0 & w & 0 \\ 0 & 0 & 0 & w & 0 & v \\ 0 & 0 & 0 & 0 & v & 0 \end{pmatrix}
H_{\mathrm{per.}}=\begin{pmatrix} 0 & v & 0 & 0 & 0 & w \\ v & 0 & w & 0 & 0 & 0 \\ 0 & w & 0 & v & 0 & 0 \\ 0 & 0 & v & 0 & w & 0 \\ 0 & 0 & 0 & w & 0 & v \\ w & 0 & 0 & 0 & v & 0 \end{pmatrix}
H(k)=\begin{pmatrix} 0 & v+w\mathrm{e}^{ik} \\ v+w\mathrm{e}^{-ik} & 0 \end{pmatrix}

FT

E(k)=\pm\sqrt{v^2+w^2+2vw\cos{(k)}}

J. K. Asbóth, et. al., vol. 909 of Lecture Notes in Physics. Springer International Publishing, 1st ed., 2016.

$$ \frac{1}{2\pi}\int K \mathrm{d}A = 2(1-g) $$

Su-Schrieffer-Heeger

H(k)=\begin{pmatrix} 0 & v+w\mathrm{e}^{ik} \\ v+w\mathrm{e}^{-ik} & 0 \end{pmatrix}
E(k)=\pm\sqrt{v^2+w^2+2vw\cos{(k)}}
H(k)=d_x(k) \mathbf{\sigma}_x + d_y(k) \mathbf{\sigma}_y + d_z(k) \mathbf{\sigma}_z
\mathbf{d}(k)=\begin{pmatrix} d_x(k) \\ d_y(k) \\ d_z(k) \end{pmatrix} = \begin{pmatrix} v+w\cos{(k)} \\ w\sin{(k)} \\ 0 \end{pmatrix}
\nu = \frac{1}{2\pi}\int \left( \tilde{\mathbf{d}}(k) \times \frac{\mathrm{d}}{\mathrm{d}k} \tilde{\mathbf{d}}(k) \right)_z\mathrm{d}k

vinding number

J. K. Asbóth, et. al., vol. 909 of Lecture Notes in Physics. Springer International Publishing, 1st ed., 2016.

What are topologic insulators good for?

  • They are robust
  • Their properties are not localised
  • They depend only on fundamental constants
  • Quantum computing
  • Measurement of fundamental constants
  • Spintronics
  • Topologically protected edge states

Topological insulators are rare!

25%

Zirconium pentatelluride - ZrTe5

Mutch, J., Chen, et. al. Science Advances, 2019 5(8). 

Zirconium pentatelluride - ZrTe5

Mutch, J., Chen, et. al. Science Advances, 2019 5(8). 

Zirconium pentatelluride - ZrTe5

$$ \#1 $$

$$ \#2 $$

$$ d $$

$$ h$$

$$ R_1 $$

$$ R_2 $$

$$ Ang $$

55

49

1015

813

178

90

6000

4560

Zirconium pentatelluride - ZrTe5

$$ O_x $$

$$ \mathcal{A}_1 $$

$$ \mathcal{B}_1 $$

$$ C $$

$$ O_z$$

$$ O_x $$

$$ \mathcal{A}_1 $$

$$ \mathcal{B}_1 $$

$$ C $$

$$ O_z$$

Stiffness tensor (DFT)

Finite Element Method

Electric properties (DFT)

Zirconium pentatelluride - ZrTe5

COMSOL and DFT

Zirconium pentatelluride - ZrTe5

Ab initio

Zirconium pentatelluride - ZrTe5

Ab initio

The team

János Koltai

Péter Nemes-Incze

Levente Tapasztó

Oroszlányi László

Péter Vancsó

Dániel Nagy

Talk in Regensburg 2022

By novidad21

Talk in Regensburg 2022

  • 499