Seminar presentation

At the group meeting of the

Centre of Low Temperature Physics 

Zoltán Tajkov

2022.09.29

Manipulating the topological properties of thin heterostructures

TOPICS

Graphene

Competition of trivial and topological phases in graphene based hybrid systems

ZrTe5

Revealing the topological phase diagram of ZrTe using the complex strain fields of microbubbles

Competing gapped and gapless ground state in the flat surface band of multilayer rhombohedral graphite

Graphite

BiTeX/graphene heterostructures

BiTeI sandwich: Kou et al. ACS Nano, 8 10448 (2014)

BiTeX/graphene heterostructures

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

DFT (SIESTA) results

topological

trivial

Sandwich:

~40 meV topological gap

One sided:

~1 meV trivial gap

BiTeX/graphene heterostructures

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

topological

trivial

BiTeX/graphene heterostructures

Z. Tajkov et al. Nanoscale 11, 12704 (2019)

The most important parameters

Kekulé

Kane-Mele

Strain promotes SOC \( \rightarrow \) TI

topological

trivial

BiTeX/graphene heterostructures

\begin{array}{c} \hat{H}=-v\left( {\boldsymbol{k}}\cdot\boldsymbol{\sigma}\otimes\tau_{0} +\boldsymbol{A}\cdot\boldsymbol{\sigma}\otimes\tau_{z} \right)\\ +\Delta\sigma_z\otimes\tau_x -m\sigma_z\otimes\tau_0 \end{array}
\boldsymbol{A}=\underbrace{\frac{\beta}{2a_{0}}\varepsilon\left(1+\rho\right)}\left(\begin{array}{r} \cos2\vartheta\\ -\sin2\vartheta \end{array}\right)
|\xi|=\sqrt{\Delta^2-m^2}
\xi/v

Strain can close the gap at \(\boldsymbol{k}=\boldsymbol{0}\) if

Gamayun et al. New J. Phys. 20, 023016 (2018)

Z. Tajkov et. al. Physical Review B 101 (23), 235146 (2020)

\Psi_\boldsymbol{k}=\left(-\left| A, \boldsymbol{k}+ \boldsymbol{G} \right. \rangle \left|B,\boldsymbol{k}-G\right.\rangle \left|B,\boldsymbol{k}+G\right.\rangle \left|A,\boldsymbol{k}+G\right.\rangle \right)

Zirconium pentatelluride - ZrTe5

Mutch, J., Chen, et. al. Science Advances, 2019 5(8). 

Zirconium pentatelluride - ZrTe5

Mutch, J., Chen, et. al. Science Advances, 2019 5(8). 

Zirconium pentatelluride - ZrTe5

$$ \#1 $$

$$ \#2 $$

$$ d $$

$$ h$$

$$ R_1 $$

$$ R_2 $$

$$ Ang $$

55

49

1015

813

178

90

6000

4560

Zirconium pentatelluride - ZrTe5

$$ O_x $$

$$ \mathcal{A}_1 $$

$$ \mathcal{B}_1 $$

$$ C $$

$$ O_z$$

$$ O_x $$

$$ \mathcal{A}_1 $$

$$ \mathcal{B}_1 $$

$$ C $$

$$ O_z$$

Stiffness tensor (DFT)

Finite Element Method

Electric properties (DFT)

Zirconium pentatelluride - ZrTe5

COMSOL and DFT

Zirconium pentatelluride - ZrTe5

Ab initio

Zirconium pentatelluride - ZrTe5

Ab initio - Mono and bilayer

Rhombohedral Graphite

E(\mathbf{q}) \propto |\mathbf{q}|^N

SSH chain

Rhombohedral Graphite

What does the experiment say? STM results

Rhombohedral Graphite

DMRG - Beyond meanfield

Theory

Degenerate ground state!

Rhombohedral Graphite

Experiments

Minimal

By novidad21