Composition of

Arrows

and

Symmetric Monoidal Categories

in Scala

Oleg Nizhnik

Monads

trait Monad[F[_]] {
  def pure[A](a: A): F[A]
  def flatMap[A, B](a: A)(f: A => F[B]): F[B]
}

Composition uses functions as continuations

  • Have access to a wide language capabilities
  • opaque

case study: Console

  1. Implement Console process. Should be able to
    • read line
    • write ine
  2. echo2 : read two lines from the input and print concatenated string to  the output
  3. countGets  calculate how many lines would be read

Attempt 1: Monads

sealed trait ConsoleM[X]

object ConsoleM {
  case class Pure[A](x: A) extends ConsoleM[A]
  case class Bind[A, B](x: ConsoleM[A], fab: A => ConsoleM[B]) extends ConsoleM[B]
  case object GetLine extends ConsoleM[String]
  case class PutLine(s: String) extends ConsoleM[Unit]

  implicit val monad: Monad[ConsoleM] = new StackSafeMonad[ConsoleM] {
    def pure[A](x: A): ConsoleM[A] = Pure(x)
    def flatMap[A, B](fa: ConsoleM[A])(f: A => ConsoleM[B]): ConsoleM[B] = Bind(fa, f)
  }

  val getLine: ConsoleM[String] = GetLine
  def putLine(s: String): ConsoleM[Unit] = PutLine(s)
}
  def echo2: ConsoleM[Unit] =
    for {
      x <- getLine
      y <- getLine
      _ <- putLine(x + y)
    } yield x + y

  def countGets[A](cm: ConsoleM[A]): Int = cm match {
    case Pure(_)    => 0
    case GetLine    => 1
    case PutLine(_) => 0
    case Bind(m, f) => countGets(m) + (??? : Int)
  }

Attempt 1: Monads

FAILED

Attempt 2: Applicatives

sealed trait ConsoleA[X]

object ConsoleA {
  case class Pure[A](x: A)                                 extends ConsoleA[A]
  case class Ap[A, B](f: ConsoleA[A => B], x: ConsoleA[A]) extends ConsoleA[B]
  case object GetLine                                      extends ConsoleA[String]
  case class PutLine(s: String)                            extends ConsoleA[Unit]

  implicit val applicative: Applicative[ConsoleA] =
    new Applicative[ConsoleA] {
      def pure[A](x: A): ConsoleA[A]                                   = Pure(x)
      def ap[A, B](ff: ConsoleA[A => B])(fa: ConsoleA[A]): ConsoleA[B] = Ap(ff, fa)
    }

  val getLine: ConsoleA[String]          = GetLine
  def putLine(s: String): ConsoleA[Unit] = PutLine(s)
}

Attempt 2: Applicatives

  def countGets[X](ca: ConsoleA[X]): Int = ca match {
    case Pure(_)    => 0
    case GetLine    => 1
    case PutLine(_) => 0
    case Ap(f, x)   => countGets(f) + countGets(x)
  }

  def echo2: ConsoleA[Unit] = {
    val start = (getLine, getLine).tupled
    putLine(???)
  }

FAILED

Arrows

trait Arr[->[_, _]] {
  def lift[A, B](f: A => B): A -> B
  def split[A, B, C, D](f: A -> B, g: C -> D): (A, C) -> (B, D)
  def compose[A, B, C](f: B -> C, g: A -> B): A -> C
}

Attempt 3: Arrows

sealed trait ConsoleArr[X, Y]

object ConsoleArr{
  case class Lift[A, B](f: A => B) extends ConsoleArr[A, B]
  
  case class AndThen[A, B, C](start: ConsoleArr[A, B], next: ConsoleArr[B, C])
  
    extends ConsoleArr[A, C]
  case class Split[A, B, C, D](first: ConsoleArr[A, B], second: ConsoleArr[C, D])
    extends ConsoleArr[(A, C), (B, D)]
    
  case object GetLine extends ConsoleArr[Unit, String]
  
  case object PutLine extends ConsoleArr[String, Unit]

Attempt 3: Arrows

  implicit val arrow: Arr[ConsoleArr] = new Arr[ConsoleArr] {
    def lift[A, B](f: A => B): ConsoleArr[A, B] = Lift(f)
    def split[A, B, C, D](
    	fab: ConsoleArr[A, B], 
        fcd: ConsoleArr[C, D]
        ): ConsoleArr[(A, C), (B, D)] = 
      Split(fab, fcd)
    def compose[A, B, C](f: ConsoleArr[B, C], g: ConsoleArr[A, B]): ConsoleArr[A, C] = 
      AndThen(g, f)
  }

  val getLine: ConsoleArr[Unit, String] = GetLine
  val putLine: ConsoleArr[String, Unit] = PutLine

  def concat: ConsoleArr[(String, String), String] = Lift(tupled(_ + _))
  def echo2: ConsoleArr[Unit, Unit] =
    (getLine &&& getLine) >>> concat >>> putLine
    
  val echo2Verbose: ConsoleArr[Unit, Unit] =
    liftf((_: Unit) => ((), ())) andThen 
      (getLine split getLine) andThen concat andThen putLine

  def countGets[X, Y](carr: ConsoleArr[X, Y]): Int = carr match {
    case Lift(_) => 0
    case AndThen(start, next) => countGets(start) + countGets(next)
    case Split(first, second) => countGets(first) + countGets(second)
    case GetLine => 1
    case PutLine => 0
  }

Attempt 3: Arrows

SUCCESS

Arrow Use Cases

Monoid

trait Monoid[A] {
  def neutral: A
  def combine(x: A, y: A): A
}

Category

trait Cat[->[_, _]] {
  def id[A]: A -> A
  def compose[A, B, C](f: B -> C, g: A -> B): A -> C
}

Isomorphism

  case class <->[A, B](to: A -> B, from: B -> A) {
    def section    = compose(to, from) === id
    def retraction = compose(from, to) === id
  }

Monoidal category

Symmetric Monoidal Category

Tensor product is bifunctor

Pentagonal identity

Triagonal identity

Unit coherence

Associativity coherence

Coherence law

Symmetric Monoidal Category

  trait Symon[->[_, _], x[_, _], I]{
    def id[A]: A -> A
    
    def compose[A, B, C](f: B -> C, g: A -> B): A -> C
    
    def split[A, B, C, D](f: A -> B, g: C -> D): (A x C) -> (B x D)
    
    def lunit[A]: (I x A) -> A
    
    def unitl[A]: A -> (I x A) 
    
    def assocl[A, B, C]: (A x (B x C)) -> ((A x B) x C)
    
    def swap[A, B]: (A x B) -> (B x A)
  }

Symmetric Monoidal Category

Closed Monoidal Category

Cartesian Category

Cartesian Closed Category

Simply Typed Lambda Calculus

x : T \in \Gamma \frac{} {\Gamma \vdash x: T} Variable
\frac {\Gamma \vdash f : A \to B ~~~~ \Gamma \vdash e: A} {\Gamma \vdash f(e) : B} Application
\frac {\Gamma, x: A \vdash e: B} {\Gamma \vdash (\lambda x: A. e) : A \to B} Abstraction
\Gamma = \{ a : A, b : B, c : C \}

Curry-Howard

Correspondence

Logic

Type System

Category

-Lambek

Example

  def name(id: UUID): String
  def balance(id: UUID): BigDecimal
  def plus(x: BigDecimal, y: BigDecimal): BigDecimal
  def user(name: String, balance: BigDecimal): User

  def total(main: UUID, secondary: UUID): User =
    user(name(main), plus(balance(main), balance(secondary)))
  def name: UUID -> String
  def balance: UUID -> BigDecimal
  def plus: (BigDecimal x BigDecimal) -> BigDecimal
  def user: (String x BigDecimal) -> User

  def total: (UUID x UUID) -> User =
    (product(name, balance) x balance) >>> assocr >>> (id[String] x plus) >>> user

Light Linear Lambda Calculus

\frac{} {x: T \vdash x: T} Variable
\frac {\Gamma \vdash f : A \multimap B ~~~~ \Delta \vdash e: A} {\Gamma, \Delta \vdash f(e) : B} Application
\frac {\Gamma, x: A \vdash e: B} {\Gamma \vdash (\lambda x: A. e) : A \multimap B} Abstraction
\Gamma = \{ a : A, b : B, c : C \}
\frac{} {\vdash (): 1} 1-intro
\frac{\Gamma \vdash e: A} {\Gamma, x : 1 \vdash e: A} 1-elim

Curry-Howard

Correspondence

Linear Logic

Linear Types

Monoidal Category

-Lambek

Volga

is comprehension syntax

for arrows

and symmetric monoidal categories

def echo2: ConsoleArr[Unit, Unit] =
    (getLine &&& getLine) >>> concat >>> putLine

def echo2s: ConsoleArr[Unit, Unit] = arr { () =>
  val s1 = getLine()
  val s2 = getLine()
  val s = concat(s1, s2)
  putLine(s)
}

Volga

trait Parsing[I, O] {
  def parse(input: I): EitherNel[String, O]
  def print(o: O): I
}

Parsing

invertible parsing accumulating errors

def sep(sep: String): Parsing[String, (String, String)]

val readInt: Parsing[String, Int]

val date: Parsing[((Int, Int), Int), LocalDate] 

import volga.syntax.comp._
import volga.syntax.cat._
import volga.syntax.symmon._

implicit val parsingSMC: Symon[Parsing, (*, *), Unit]

val parsing = symon[Parsing, (*, *), Unit]

Parsing

  val parseDate: Parsing[String, LocalDate] = parsing { (s: V[String]) =>
    val (dayStr, monthYear) = sep(".")(s)
    val (monthStr, yearStr) = sep(".")(monthYear)
    ----
    val day   = readInt(dayStr)
    val month = readInt(monthStr)
    val year  = readInt(yearStr)

    date(day, month, year)
  }

Volga

val parseDate1: Parsing[String, LocalDate] = sep(".")
    .andThen(ident[Parsing, String].split(sep(".")))
    .andThen(parsingSMC.assocl[String, String, String])
    .andThen(readInt.split(readInt).split(readInt))
    .andThen(date)

Volga

  val parseDate1: Parsing[String, LocalDate] = parsing { (s: V[String]) =>
    val (dayStr, monthYear) = sep(".")(s)
    val (monthStr, yearStr) = sep(".")(monthYear)
    ----
    val year  = readInt(yearStr)
    val month = readInt(monthStr)
    val day   = readInt(dayStr)

    date(day, month, year)
  }

Volga

Change the order

  val parseDate: Parsing[String, LocalDate] = sep(".")
    .andThen(ident[Parsing, String].split(sep(".")))
    .andThen(
      parsingSMC
        .assocl[String, String, String]
        .andThen(parsingSMC.swap[String, String].split(ident[Parsing, String]))
        .andThen(parsingSMC.assocr[String, String, String])
        .andThen(ident[Parsing, String].split(parsingSMC.swap[String, String]))
        .andThen(parsingSMC.assocl[String, String, String])
        .andThen(parsingSMC.swap[String, String].split(ident[Parsing, String]))
    )
    .andThen(readInt.split(readInt).split(readInt))
    .andThen(
      parsingSMC
        .assocr[Int, Int, Int]
        .andThen(parsingSMC.assocl[Int, Int, Int])
        .andThen(parsingSMC.swap[Int, Int].split(ident[Parsing, Int]))
        .andThen(parsingSMC.assocr[Int, Int, Int])
        .andThen(ident[Parsing, Int].split(parsingSMC.swap[Int, Int]))
        .andThen(parsingSMC.assocl[Int, Int, Int])
        .andThen(parsingSMC.swap[Int, Int].split(ident[Parsing, Int]))
    )
    .andThen(date)

Volga

...leads to a lot more operations

  val parseDateTime: Parsing[String, LocalDateTime] = parsing { (s: V[String]) =>
    val (dayStr, rest1)        = sep(".")(s)
    val (monthStr, rest2)      = sep(".")(rest1)
    val (yearStr, rest3)       = sep(" ")(rest2)
    val (hourStr, rest4)       = sep(":")(rest3)
    val (minuteStr, secondStr) = sep(":")(rest4)
    ----
    val year   = readInt(yearStr)
    val month  = readInt(monthStr)
    val day    = readInt(dayStr)
    val hour   = readInt(hourStr)
    val minute = readInt(minuteStr)
    val second = readInt(secondStr)
    ----
    val d = date(day, month, year)
    val t = time(hour, minute, second)

    dateTime(d, t)
  }

Volga

complex logic

  val parseDateAndTimeManual =
    sep(".")
      .andThen(ident[Parsing, String].split(sep(".")))
      .andThen(
        parsingSMC.assocl[String, String, String].andThen(parsingSMC.swap[String, String].split(ident[Parsing, String]))
      )
      .andThen(ident[Parsing, (String, String)].split(sep(" ")))
      .andThen(
        ident[Parsing, (String, String)]
          .split(ident[Parsing, (String, String)])
          .andThen(parsingSMC.assocr[String, String, (String, String)])
          .andThen(
            ident[Parsing, String]
              .split(
                parsingSMC
                  .assocl[String, String, String]
                  .andThen(
                    parsingSMC
                      .swap[String, String]
                      .split(ident[Parsing, String])
                  )
                  .andThen(parsingSMC.assocr[String, String, String])
              )
          )
          .andThen(parsingSMC.assocl[String, String, (String, String)])
          .andThen(parsingSMC.swap[String, String].split(ident[Parsing, (String, String)]))
          .andThen(parsingSMC.assocl[(String, String), String, String])
      )
      .andThen(ident[Parsing, Tuple2[Tuple2[String, String], String]].split(sep(":")))
      .andThen(
        parsingSMC
          .assocr[(String, String), String, (String, String)]
          .andThen(parsingSMC.assocr[String, String, (String, (String, String))])
          .andThen(
            ident[Parsing, String]
              .split(
                parsingSMC
                  .assocl[String, String, (String, String)]
                  .andThen(ident[Parsing, (String, String)].split(ident[Parsing, (String, String)]))
                  .andThen(parsingSMC.assocr[String, String, (String, String)])
                  .andThen(
                    ident[Parsing, String]
                      .split(
                        parsingSMC
                          .assocl[String, String, String]
                          .andThen(
                            parsingSMC
                              .swap[String, String]
                              .split(ident[Parsing, String])
                          )
                          .andThen(parsingSMC.assocr[String, String, String])
                      )
                  )
                  .andThen(parsingSMC.assocl[String, String, (String, String)])
                  .andThen(parsingSMC.swap[String, String].split(ident[Parsing, (String, String)]))
                  .andThen(parsingSMC.assocr[String, String, (String, String)])
              )
          )
          .andThen(parsingSMC.assocl[String, String, (String, (String, String))])
          .andThen(parsingSMC.assocl[(String, String), String, (String, String)])
          .andThen(parsingSMC.assocl[((String, String), String), String, String])
      )
      .andThen(ident[Parsing, (((String, String), String), String)].split(sep(":")))
      .andThen(
        parsingSMC
          .assocr[((String, String), String), String, (String, String)]
          .andThen(parsingSMC.assocr[(String, String), String, (String, (String, String))])
          .andThen(parsingSMC.assocr[String, String, (String, (String, (String, String)))])
          .andThen(
            ident[Parsing, String]
              .split(
                parsingSMC
                  .assocl[String, String, (String, (String, String))]
                  .andThen(
                    parsingSMC
                      .swap[String, String]
                      .split(ident[Parsing, (String, (String, String))])
                  )
                  .andThen(parsingSMC.assocr[String, String, (String, (String, String))])
                  .andThen(
                    ident[Parsing, String]
                      .split(
                        parsingSMC
                          .assocl[String, String, (String, String)]
                          .andThen(
                            parsingSMC
                              .swap[String, String]
                              .split(ident[Parsing, (String, String)])
                          )
                          .andThen(parsingSMC.assocr[String, String, (String, String)])
                      )
                  )
                  .andThen(parsingSMC.assocl[String, String, (String, (String, String))])
                  .andThen(ident[Parsing, (String, String)].split(ident[Parsing, (String, (String, String))]))
                  .andThen(parsingSMC.assocr[String, String, (String, (String, String))])
              )
          )
          .andThen(parsingSMC.assocl[String, String, (String, (String, (String, String)))])
          .andThen(parsingSMC.assocl[(String, String), String, (String, (String, String))])
          .andThen(parsingSMC.assocl[((String, String), String), String, (String, String)])
          .andThen(parsingSMC.assocl[(((String, String), String), String), String, String])
      )
      .andThen(
        readInt
          .split(readInt)
          .split(readInt)
          .split(readInt)
          .split(readInt)
          .split(readInt)
      )
      .andThen(
        parsingSMC
          .assocr[(((Int, Int), Int), Int), Int, Int]
          .andThen(parsingSMC.assocr[((Int, Int), Int), Int, (Int, Int)])
          .andThen(parsingSMC.assocr[(Int, Int), Int, (Int, (Int, Int))])
          .andThen(parsingSMC.swap[Int, Int].split(ident[Parsing, (Int, (Int, (Int, Int)))]))
          .andThen(parsingSMC.assocr[Int, Int, (Int, (Int, (Int, Int)))])
          .andThen(
            ident[Parsing, Int]
              .split(
                parsingSMC
                  .assocl[Int, Int, (Int, (Int, Int))]
                  .andThen(parsingSMC.swap[Int, Int].split(ident[Parsing, (Int, (Int, Int))]))
                  .andThen(parsingSMC.assocr[Int, Int, (Int, (Int, Int))])
              )
          )
          .andThen(parsingSMC.assocl[Int, Int, (Int, (Int, (Int, Int)))])
          .andThen(parsingSMC.swap[Int, Int].split(ident[Parsing, (Int, (Int, (Int, Int)))]))
          .andThen(parsingSMC.assocr[Int, Int, (Int, (Int, (Int, Int)))])
          .andThen(
            ident[Parsing, Int]
              .split(
                ident[Parsing, Int]
                  .split(
                    ident[Parsing, Int]
                      .split(parsingSMC.assocl[Int, Int, Int])
                  )
              )
          )
          .andThen(parsingSMC.assocl[Int, Int, (Int, ((Int, Int), Int))])
          .andThen(parsingSMC.assocl[(Int, Int), Int, ((Int, Int), Int)])
      )
      .andThen(date.split(time))
      .andThen(dateTime)

Volga

...undoable by hand

146 operations

  val parseDate1: Parsing[String, LocalDate] = parsing { (s: V[String]) =>
    val (dayStr, monthYear) = SMCSyn(sep(".")).apply(s)
    val (monthStr, yearStr) = SMCSyn(sep(".")).apply(monthYear)
    ----
    val year  = SMCSyn(readInt).apply(yearStr)
    val month = SMCSyn(readInt).apply(monthStr)
    val day   = SMCSyn(readInt).apply(dayStr)

    SMCSyn(date).apply(day, month, year)
  }

Volga

Syntactic extensions

  val parseDate1: Parsing[String, LocalDate] = parsing { (s: V[String]) =>
    val (dayStr: V[String], monthYear: V[String]) = SMCSyn(sep(".")).apply(s)
    val (monthStr: V[String], yearStr: V[String]) = SMCSyn(sep(".")).apply(monthYear)
    ----
    val year: V[Int] = SMCSyn(readInt).apply(yearStr)
    val month: V[Int] = SMCSyn(readInt).apply(monthStr)
    val day: V[Int] = SMCSyn(readInt).apply(dayStr)

    SMCSyn(date).apply(day, month, year)
  }

Volga

Type inference.

Available in your favorite IDE today

Related works

Related works

  • Purity
  • Totality
  • Linear-like type system
  • Tagless Final Friendly

Symmetric Monoidal Category

  1. Do not require function lifting
  2. Exactly one use , except unit type
  1. Reactive streams
  2. Distributed, session types, code mobility
  3. Serverless
  4. Linear algebra, computation graphs, auto-differentiation
  5. Database languages
  6. Business rules
  7. (Co)effects

Symmetric Monoidal Category

use cases

  trait Symon[->[_, _], x[_, _], I]{
    def id[A]: A -> A
    def compose[A, B, C](f: B -> C, g: A -> B): A -> C
    def tensor[A, B, C, D](f: A -> C, g: B -> D): (A x B) -> (C x D)
    def assocl[A, B, C]: (A x (B x C)) -> ((A x B) x C)
    def swap[A, B]: (A x B) -> (B x A)
    def lunit[A]: (I x A) -> A
    def unitl[A]: A -> (I x A)
  }

Symmetric Monoidal Category

Questions

 

email: odomontois@gmail.com, o.nizhnikov@tinkoff.ru

telegram: @odomontois

 

Composition of arrows and SMC

By Oleg Nizhnik

Composition of arrows and SMC

  • 958