Methods

The economics of Housing & Homelessness

Feed-Forward Neural Networks

Models

f_{\theta}(x) = \theta ^T x

Linear function of the inputs & parameters

f_{\theta}(x) = \theta ^T \phi(x)

Linear function of the parameters and non-linear of the inputs

f_{\theta}(x) = g(\theta, x)

Non-linear function of the parameters & inputs

Nonlinear Models Allow One to Highlight Treatment Hetergeneity

Optimization Problem

\underset{\theta \in \Theta}{\textrm{argmin}} \ L(\theta):= \frac{1}{n} \sum _i (y_i - f_{\theta}(x_i)^2)
\theta_t = \theta _{t-1} - \alpha \nabla L(\theta_{t-1})

Solution Method

\theta _0 = \textrm{Random Intialization}

Early Stopping

Is a Python Library for "Deep Learning"

  • Automatic Differentiation 
  • Compiles Python Code
jax.grad(f)(x)
jax.jit(f)(x)
  • Functional Transformations
jax.vmap(f)(x)

Methods

By Patrick Power

Methods

  • 160