Sarah Dean PRO
asst prof in CS at Cornell
Fall 2025, Prof Sarah Dean
"What we do"
"What we do"
*For now, assume diagonalizable
"Why we do it"
$$ s_{t+1} = F(s_t)$$
(Autonomous) discrete-time dynamical system where \(F:\mathcal S\to\mathcal S\)
\(\mathcal S\) is the state space. The state is sufficient for predicting its future.
\(s\)
\(F(s)\)
$$ s_{t+1} = F(s_t)$$
(Autonomous) discrete-time dynamical system where \(F:\mathcal S\to\mathcal S\)
Examples:
rainstorms
viruses on a computer network
parameters of ML model
Given initial state \(s_0\), the solutions to difference equations, i.e. trajectories: $$ (s_0, F(s_0), F(F(s_0)), ... ) $$
What might trajectories look like?
An equilibrium point \(s_\mathrm{eq}\) satisfies
\(s_{eq} = F(s_{eq})\)
An equilibrium point \(s_{eq}\) is
An equilibrium point \(s_{eq}\) is
example: \(s_{t+1} = s_t\)
*as long as \(F\neq I\)
Examples:
\(0\)
Example 1: independent growth \(\displaystyle s_{t+1} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} s_t \)
\(0<\lambda_2<\lambda_1<1\)
\(0<\lambda_2<1<\lambda_1\)
\(1<\lambda_2<\lambda_1\)
Example 2: balanced growth & exchange
\(\displaystyle s_{t+1} = \begin{bmatrix} \alpha & -\beta\\\beta & \alpha\end{bmatrix} s_t \)
\(0<\alpha^2+\beta^2<1\)
\(1<\alpha^2+\beta^2\)
eigenvalues are \( \alpha \pm i \beta\)
$$\begin{bmatrix}1\\0\end{bmatrix} \to \begin{bmatrix}\alpha\\ \beta\end{bmatrix} $$
rotation by \(\arctan(\beta/\alpha)\)
scale by \(\sqrt{\alpha^2+\beta^2}\)
Example 3: balanced growth & imbalanced accumulation
\(\displaystyle s_{t+1} = \begin{bmatrix} \lambda & 1\\ & \lambda\end{bmatrix} s_t \)
\(0<\lambda<1\)
\(1<\lambda\)
$$ \left(\begin{bmatrix} \lambda & \\ & \lambda\end{bmatrix} + \begin{bmatrix} & 1\\ & \end{bmatrix} \right)^t$$
$$ =\begin{bmatrix} \lambda^t & t\lambda^{t-1}\\ & \lambda^t\end{bmatrix} $$
\(\lambda\) is an eigenvalue
Suppose that \(s_0=v\) is an eigenvector of \(F\)
$$ s_{t+1} = Fs_t$$
Claim: \(\displaystyle s_{t} =\lambda^t v\) (proof by induction)
Consider \(\mathcal S = \mathbb R^d\) and linear dynamics
Suppose that \(s_0=v\) is an eigenvector of \(F\)
$$ s_{t+1} = Fs_t$$
Claim: \(\displaystyle s_{t} =\lambda^t v\) (proof by induction)
Consider \(\mathcal S = \mathbb R^d\) and linear dynamics
\(\lambda<1\)
Suppose that \(s_0=v\) is an eigenvector of \(F\)
$$ s_{t+1} = Fs_t$$
Claim: \(\displaystyle s_{t} =\lambda^t v\) (proof by induction)
Consider \(\mathcal S = \mathbb R^d\) and linear dynamics
\(\lambda>1\)
Consider \(\mathcal S = \mathbb R^d\) and linear dynamics
If similar to a real diagonal matrix: \(F=VDV^{-1} = \begin{bmatrix} |&&|\\v_1&\dots& v_d\\|&&|\end{bmatrix} \begin{bmatrix} \lambda_1&&\\&\ddots&\\&&\lambda_d\end{bmatrix} \begin{bmatrix} -&u_1^\top &-\\&\vdots&\\-&u_d^\top&-\end{bmatrix} \)
Claim: \(\displaystyle s_t = \sum_{i=1}^d v_i \lambda_i^t (u_i^\top s_0)\) is a weighted combination of (right) eigenvectors
$$ s_{t+1} = Fs_t$$
Example 1: \(\displaystyle s_{t+1} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} s_t \)
\(v_1\)
\(v_2\)
\(0<\lambda_2<\lambda_1<1\)
General case:
\(\displaystyle s_{t+1} = \begin{bmatrix} a & b \\ c& d \end{bmatrix} s_t =V\begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix}V^{-1} s_t\)
\(0<\lambda_2<\lambda_1<1\)
General case: real eigenvalues with geometric multiplicity equal to algebraic multiplicity
Example 1: \(\displaystyle s_{t+1} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} s_t \)
Example 2: \(\displaystyle s_{t+1} = \begin{bmatrix} \alpha & -\beta\\\beta & \alpha\end{bmatrix} s_t \)
General case: pair of complex eigenvalues
Example 3: \(\displaystyle s_{t+1} = \begin{bmatrix} \lambda & 1\\ & \lambda\end{bmatrix} s_t \)
General case: eigenvalues with geometric multiplicity \(<\) algebraic multiplicity
Exercise: what do trajectories look like when entries are negative? (demo notebook)
Fact: All matrices are similar to a matrix of Jordan canonical form
\(\begin{bmatrix} J_1&&\\&\ddots&\\&&J_p\end{bmatrix} \) where \(J_i = \begin{bmatrix}\lambda_i & 1 & &\\ & \ddots & \ddots &\\ &&\ddots &1\\ && &\lambda_i \end{bmatrix}\in\mathbb R^{m_i\times m_i}\)
Reference: Ch 3d and 4 in Callier & Desoer, "Linear Systems Theory"
\(m_i\) is related to geometric & algebraic multiplicity of \(\lambda_i\)
Powers of Jordan blocks are \(J_i^t = \begin{bmatrix}\lambda_i^t & & &\\ & \ddots & &\\ &&\ddots &\\ && &\lambda_i^t \end{bmatrix}\)
\(O(\lambda_i^{t-1}t^{m_i-1})\)
The change of basis contains eigenvectors and "generalized eigenvectors"
Theorem: Let \(\{\lambda_i\}_{i=1}^d\subset \mathbb C\) be the eigenvalues of \(F\in\mathbb R^{d\times d}\).
Then for \(s_{t+1}=Fs_t\), the equilibrium \(s_{eq}=0\) is
\(\mathbb C\)
"What we do" in general
Next time: nonlinear dynamics
By Sarah Dean