CS 4/5789: Introduction to Reinforcement Learning
Lecture 15
Prof. Sarah Dean
MW 2:45-4pm
110 Hollister Hall
Agenda
0. Announcements & Recap
1. PG with Q & A functions
2. Trust Regions & KL-Divergence
3. Natural Policy Gradient
Announcements
HW2 due Monday 3/28
5789 Paper Review Assignment (weekly pace suggested)
Monday 3/21 is the last day to drop
Prelim Tuesday 3/22 at 7:30-9pm in Phillips 101
Closed-book, definition/equation sheet provided
Focus: mainly Unit 1 (known models) but many lectures in Unit 2 revisit important key concepts
Study Materials: Lecture Notes 1-15, HW0&1
Lecture on Monday 3/21 will be a review
Prelim Exam
Recap
Derivative Free Optimization: Random Search
\(\nabla J(\theta)\)\( \approx \frac{1}{2\delta} (J(\textcolor{cyan}{\theta}+{\delta v}) - J(\textcolor{cyan}{\theta}-{\delta v}))\textcolor{LimeGreen}{v}\)
\(J(\theta) = -\theta^2 - 1\)
\(\theta\)
Recap
Derivative Free Optimization: Sampling
\(\nabla J(\theta)\)\( \approx \nabla_\theta \log(P_\theta(x)) h(x) \)
\(J(\theta) = \mathbb E_{x\sim P_\theta}[h(x)]\)
\(x\)
\(= 2(\theta-x)\theta h(x)\)
\(h(x) = -x^2\)
\(=\mathbb E_{x\sim\mathcal N(\theta, 1)}[-x^2]\)
\(P_\theta = \mathcal N(\theta, 1)\)
RL Setting
- MDP \(\mathcal M = \{\mathcal S, \mathcal A, P, r, \gamma\}\) with \(P, r\) unknown
- policy \(\pi_\theta\) with parameter \(\theta\in\mathbb R^d\)
- observe rollout of \(\pi_\theta\): \(\tau = (s_0,a_0,s_1,...)\) and \((r_0, r_1,...)\)
- objective function
\(J(\theta) = \mathbb E_{s_0\sim\mu_0}[\sum_{t=0}^\infty\gamma^t r_t \mid P,r,\pi_\theta] = \mathbb E_{\tau\sim\rho_\theta}[R(\tau)]\)
Simple Random Search
- with \(\theta_t \pm \delta v\) observe \(\tau_+\) and \(\tau_-\)
- finite difference approx
\(g=\frac{1}{2\delta}(R(\tau_+) - R(\tau_-))v\)
REINFORCE
- with \(\theta_t\) observe \(\tau\)
- trajectory-based approx
\(g=\sum_{t=0}^\infty \nabla_\theta \log \pi_\theta(a_t|s_t) R(\tau)\)
Meta-Algorithm: DF-SGA
initialize \(\theta_0\)
for \(t=0,1,...\)
- collect rollouts using \(\theta_t\)
- estimate gradient with \(g_t\)
- \(\theta_{t+1} = \theta_t + \alpha g_t\)
Agenda
0. Announcements & Recap
1. PG with Q & A functions
2. Trust Regions & KL-Divergence
3. Natural Policy Gradient
CS 4/5789: Lecture 15
By Sarah Dean