Topological Polymers and Random Embeddings of Graphs

Clayton Shonkwiler

Colorado State University

https://shonkwiler.org

December, 2025

Collaborators

Jason Cantarella

U. of Georgia

Tetsuo Deguchi

Ochanomizu U.

Erica Uehara

Kyoto U.

Funding: Simons Foundation (#524120, #709150), National Science Foundation (DMS–2107700), Japan Science and Technology Agency (CREST JPMJCR19T4, Deguchi Lab), Japan Society for the Promotion of Science (KAKENHI JP17H06463)

Topological Polymers

A topological polymer joins monomers in any graph type.

Embed into \(\mathbb{R}^3\) with probability proportional to

\(\displaystyle \exp\left( -\frac{1}{2\sigma^2}\sum_{\stackrel{\bullet\!-\!-\!\bullet}{v_i \,\, v_j}}\|x_i-x_j\|^2\right)\)

Theorem [Estrada–Hatano, James–Guth]

\(\langle R_g^2(\mathcal{G})\rangle = \frac{3\sigma^2}{\mathbf{v}} \operatorname{tr}L(\mathcal{G})^+\).

Graph Laplacian

Pseudoinverse

Motivating Questions

Question

How much of this can be generalized beyond Gaussian distributions?

Question

What if the graph has special structure? E.g., subdivision graphs.

Chain Groups

Let \(\mathcal{G}\) be a (directed) graph with \(\mathbf{e}\) edges and \(\mathbf{v}\) vertices.

Definition

The vector space \(C_0\) of vertex chains is the vector space of (formal) linear combinations of vertices:

\(x = x_1 v_1 + \dots + x_{\mathbf{v}}v_{\mathbf{v}}\).

Definition

The vector space \(C_1\) of edge chains is the vector space of (formal) linear combinations of edges:

\(w = w_1 e_1 + \dots + w_{\mathbf{e}}e_{\mathbf{e}}\).

Boundaries

Definition

The boundary map \(\partial : C_1 \to C_0\) is defined by

\(\partial(e_i) = \operatorname{head}(e_i) - \operatorname{tail}(e_i)\).

\partial(e_4)=v_4-v_2
\partial(e_4-e_3)=v_4-v_3

Boundaries

Definition

The boundary map \(\partial : C_1 \to C_0\) is defined by

\(\partial(e_i) = \operatorname{head}(e_i) - \operatorname{tail}(e_i)\).

Definition

\(\operatorname{ker} \partial \subset C_1\) is the loop space of \(\mathcal{G}\).

Boundaries

Definition

Every \(w \in \ker \partial \subset C_1\) is a linear combination of closed loops. \(\dim\ker \partial\) is the cycle rank \(\chi(\mathcal{G}) = \mathbf{e} - \mathbf{v}+1\).

\(-\)

\(=\)

Embedding Spaces

The chain spaces encode the topology of the graph. The embedding into \(\mathbb{R}^3\) is determined by:

Definition

The space of vertex positions \(C^0 := \operatorname{Lin}(C_0,\mathbb{R}^3) \simeq \operatorname{Mat}_{3 \times \mathbf{v}}\).

Definition

The space of edge displacements \(C^1 := \operatorname{Lin}(C_1,\mathbb{R}^3) \simeq \operatorname{Mat}_{3 \times \mathbf{e}}\).

Definition

The displacement map \(\operatorname{disp}: C^0 \to C^1\) is given by

\(\operatorname{disp}(X)(e_i) = X(\operatorname{head}(e_i)) - X(\operatorname{tail}(e_i)) = X(\partial(e_i))\).

Some Linear Algebra

Proposition

The map \(\operatorname{disp}:C^0 \to C^1\) is equal to the map \(\partial^\ast\) induced by \(\operatorname{Lin}(-,\mathbb{R}^3)\).

Proposition

If \(W = \partial^* X = X \partial \), then 

\(\operatorname{vec}W = (\partial^T \otimes I_3) \operatorname{vec} X\).

The vec Trick

A = \underbrace{\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{p1} & \cdots & a_{pn} \end{bmatrix}}_{p \times n}
\operatorname{vec} A = \underbrace{\begin{bmatrix} a_{11} \\ \vdots \\ a_{1n} \\ \vdots \\ a_{p1} \\ \vdots \\ a_{pn} \end{bmatrix}}_{ pn \times 1}

The Kronecker Product

A = \underbrace{\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{p1} & \cdots & a_{pn} \end{bmatrix}}_{p \times n}
B = \underbrace{\begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{q1} & \cdots & b_{qm} \end{bmatrix}}_{q \times m}
A \otimes B = \underbrace{\begin{bmatrix} a_{11} B & \cdots & a_{1n} B \\ \vdots & \ddots & \vdots \\ a_{p1} B & \cdots & a_{pn} B \end{bmatrix}}_{pq \times mn}
I_p \otimes B = \underbrace{\begin{bmatrix} B & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & B \end{bmatrix}}_{pq \times pm}

Random Graph Embeddings

Theorem

The space of assignments of edge displacements compatible with the graph type \(\mathcal{G}\) is the linear subspace

\(\operatorname{im}\operatorname{disp} = \operatorname{im}\partial^\ast = \operatorname{im}(\partial^T \otimes I_3)\subset C^1\).

\(C^1 \simeq \mathbb{R}^{3\mathbf{e}}\)

\(C^0 \simeq \mathbb{R}^{3\mathbf{v}}\)

\(\partial^\ast\)

\(\operatorname{im}\partial^\ast\)

?

\(\partial^{\ast +}\)

\((\operatorname{ker}\partial^\ast)^\bot\)

Sampling

  • Compute pseudoinverse \(\partial^{\ast +}: C^1 \to C^0\).
  • Sample \(W\) from conditional distribution on \(\operatorname{im}\partial^\ast \subset C^1\).
  • Construct vertex positions \(X = \partial^{\ast +} W\); i.e.,
    \(\operatorname{vec}X = (\partial^T \otimes I_3)^+ \operatorname{vec}W\).

Proposition

If \(\operatorname{vec}W\) is sampled from a Gaussian with variance \(\sigma^2\), then \(\operatorname{vec}X = (\partial^T \otimes I_3)^+ \operatorname{vec}W\) is Gaussian with covariance 

\(\sigma^2[(\partial \partial^T)^+ \otimes I_3] = \sigma^2 (L^+ \otimes I_3)\).

Subdivided Graphs

Definition

For a multigraph \(\mathcal{G}\), let \(\mathcal{G}_n\) be the graph created by subdividing each edge of \(\mathcal{G}\) into \(n\) edges.

\(\langle R_g^2(\mathcal{G}_n)\rangle = \frac{3\sigma^2}{\mathbf{v(\mathcal{G}_n)}} \operatorname{tr}L(\mathcal{G}_n)^+\)

Chain Maps and Structure Graphs

Idea

The junction positions in a random embedding of a subdivided graph ought to be some random embedding of the structure graph.

Chain Maps and Structure Graphs

Idea

The junction positions in a random embedding of a subdivided graph ought to be some random embedding of the structure graph.

Idea

The radius of gyration of the subdivided graph should be some weighted radius of gyration of the structure graph.

Radius of Gyration

Idea

The radius of gyration of the subdivided graph should be some weighted radius of gyration of the structure graph.

Theorem [with Cantarella, Deguchi, Uehara (2022)]

\(\lim_{n \to \infty}\frac{1}{n}\langle R_g^2(\mathcal{G}_n)\rangle = \frac{3\sigma^2}{2\mathbf{e}(\mathcal{G})}\left(\operatorname{tr}\mathcal{L}^+(\mathcal{G})+\frac{1}{3}\operatorname{Loops}(\mathcal{G})-\frac{1}{6}\right)\).

Theorem [with Cantarella, Deguchi, Uehara (2025)]

\(\langle R_g^2(\mathcal{G}_n)\rangle = 3\sigma^2\frac{n^2-1}{\mathbf{v}(\mathcal{G_n})}\left(\frac{n}{n+1}\operatorname{tr}\mathcal{L}_{\operatorname{deg}(n)}^+(\mathcal{G})+\frac{1}{3}\left(1-\frac{1}{2\mathbf{v}(\mathcal{G_n})}\right)\operatorname{Loops}(\mathcal{G_n})\right.\)

\( \left. \qquad \qquad \qquad \qquad \qquad -\frac{1}{6}\left(1-\frac{1}{\mathbf{v}(\mathcal{G_n})}\right)\right)\).

Note: \(\mathbf{v}(\mathcal{G}_n) = (n-1)\mathbf{e}(\mathcal{G})+\mathbf{v}(\mathcal{G})\)

Thank you!

References

Factoring the Laplacian to understand topological polymers

J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara

Europhysics Letters 152 (2025), no. 1, 12001

Radius of gyration, contraction factors, and subdivisions of topological polymers

J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara

J. Phys. A 55 (2022), no. 47, 475202

An exact formula for the contraction factor of a subdivided Gaussian topological polymer

J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara

J. Phys. A 58 (2025), no. 35, 355201

Topological Polymers and Random Embeddings of Graphs

By Clayton Shonkwiler

Topological Polymers and Random Embeddings of Graphs

  • 24