Richard Carter
Discover Vilavi's unique statement jewelry that infuses everyday style with a playful spirit. From bold rings to elegant necklaces and chic body chains for both men and women, https://vilavi.co.uk/ offers more than accessories
Please ask questions as I go along ... I've written this in a hurry so if you're confused, you're probably not alone
Everything! (and hopefully nothing for you):
all validation is offloaded to another library - pydantic-core which I'm building now
"You can't make a Tomlette without breaking a few Gregs!" (Succession S2E9) - best TV pun ever?
I'm going to have to upset some people to get V2 out:
class MyModel(BaseModel): appointment_time: datetime | None @validator('appointment_time', mode='wrap') def validate_appointment_time(cls, v, handler): if v == 'now': return datetime.now() try: return handler(v) except ValidationError: # we don't want to fail, so just use None return None
class MyModel(BaseModel): appointment_time: datetime | None @validator('appointment_time', mode='wrap') def validate_appointment_time(cls, v, handler): if v == 'now': return datetime.now() try: return handler(v) except ValidationError: # we don't want to fail, so just use None return None
class MyModel(BaseModel): appointment_time: datetime | None @validator('appointment_time', mode='wrap') def validate_appointment_time(cls, v, handler): if v == 'now': return datetime.now() try: return handler(v) except ValidationError: # we don't want to fail, so just use None return None
class MyModel(BaseModel): appointment_time: datetime | None @validator('appointment_time', mode='wrap') def validate_appointment_time(cls, v, handler): if v == 'now': return datetime.now() try: return handler(v) except ValidationError: # we don't want to fail, so just use None return None
class MyModel(BaseModel): appointment_time: datetime | None @validator('appointment_time', mode='wrap') def validate_appointment_time(cls, v, handler): if v == 'now': return datetime.now() try: return handler(v) except ValidationError: # we don't want to fail, so just use None return None
(Implemented, but not with this nice syntactic sugar)
AKA "The onion" - like middleware
class StrictModel(BaseModel, strict=True): a_string: str an_int: int set_of_ints: Set[int] class LaxModel(BaseModel): lax_string: str strict_string1: str = Field(..., strict=True) strict_string2: StrictStr
class StrictModel(BaseModel, strict=True): a_string: str an_int: int set_of_ints: Set[int] class LaxModel(BaseModel): lax_string: str strict_string1: str = Field(..., strict=True) strict_string2: StrictStr
class StrictModel(BaseModel, strict=True): a_string: str an_int: int set_of_ints: Set[int] class LaxModel(BaseModel): lax_string: str strict_string1: str = Field(..., strict=True) strict_string2: StrictStr
class StrictModel(BaseModel, strict=True): a_string: str an_int: int set_of_ints: Set[int] class LaxModel(BaseModel): lax_string: str strict_string1: str = Field(..., strict=True) strict_string2: StrictStr
(Implemented, but not with this nice syntactic sugar)
(Does not apply when "downcasting" from JSON)
class MyModel(BaseModel): int_or_bool: int | bool bool_or_int: bool | int print(MyModel(int_or_bool=1)) #> 1, 1 print(MyModel(int_or_bool=True)) #> True, True print(MyModel(int_or_bool='1')) #> 1, True :-( ?
class MyModel(BaseModel): int_or_bool: int | bool bool_or_int: bool | int print(MyModel(int_or_bool=1)) #> 1, 1 print(MyModel(int_or_bool=True)) #> True, True print(MyModel(int_or_bool='1')) #> 1, True :-( ?
class MyModel(BaseModel): int_or_bool: int | bool bool_or_int: bool | int print(MyModel(int_or_bool=1)) #> 1, 1 print(MyModel(int_or_bool=True)) #> True, True print(MyModel(int_or_bool='1')) #> 1, True :-( ?
(Implemented, but not with this nice syntactic sugar)
(Using strict mode)
(Also works with models and model instances)
class MyModel1(BaseModel): none_allowed_required: str | None none_allowed_not_required: str | None = None from typing_extentions import Required, NotRequired class MyModel2(BaseModel): # ... maybe, do you want this? none_allowed_required: Required[str] none_allowed_not_required: NotRequired[str]
class MyModel1(BaseModel): none_allowed_required: str | None none_allowed_not_required: str | None = None from typing_extentions import Required, NotRequired class MyModel2(BaseModel): # ... maybe, do you want this? none_allowed_required: Required[str] none_allowed_not_required: NotRequired[str]
class MyModel1(BaseModel): none_allowed_required: str | None none_allowed_not_required: str | None = None from typing_extentions import Required, NotRequired class MyModel2(BaseModel): # ... maybe, do you want this? none_allowed_required: Required[str] none_allowed_not_required: NotRequired[str]
(Implemented, but not with this nice syntactic sugar)
(I'm no longer scared of the word "optional")
from pydantic import validate validate(List[int], [1, 2, '3']) #> [1, 2, 3] validate(List[int], [1, 2, 3], strict=True) #> [1, 2, 3] validate(List[int], [1, 2, '3'], strict=True) #> raises ValidationError
(Implemented, but not with this nice syntactic sugar)
No intermediate model required (unlike parse_obj in V1)
class MyModel(BaseModel): name: str age: int friends: List[int] settings: Dict[str, float] MyModel.validate_json('{...}')
(Implemented, but not with this nice syntactic sugar)
No json.loads - just rust JSON parsing straight into validation
Benchmark | Speed up |
---|---|
Simple model (str, int, List[int], Dict[str, float]) | 15.97x |
Simple model - JSON | 11.56x |
A bool (single value) | 3.46x |
Recursive model, 50 deep | 3.99x |
list of typed dicts, length 100 | 12.14x |
list of ints, length 1000 | 25.49x |
from pydantic_core import SchemaValidator schema_validator = SchemaValidator({'type': 'bool'}) print(repr(schema_validator))
(This code actually runs now!)
Let's start simple
SchemaValidator(name="bool", validator=BoolValidator)
print(schema_validator.validate_python(True)) -> True print(schema_validator.validate_python(1)) -> True print(schema_validator.validate_json('true')) -> True
from pydantic_core import SchemaValidator # Equivalent to: Dict[str, Optional[int]] schema_validator = SchemaValidator({ 'type': 'dict', 'keys': {'type': 'str'}, 'values': {'type': 'optional', 'schema': {'type': 'int'}} })
Let's get a bit more complicated
SchemaValidator(name="dict", validator=DictValidator { strict: false, key_validator: Some(StrValidator), value_validator: Some( OptionalValidator {validator: IntValidator}, ), min_items: None, max_items: None, try_instance_as_dict: false, })
class MyModel(BaseModel): name: str age: int | None = 42 settings: dict[str, float] friends: list[int | str]
And finally...
(you don't need to read all this)
SchemaValidator(name="MyCoreModel", validator=ModelClassValidator { strict: false, class: Py(0x12fe7e7c0), (MyCoreModel) new_method: Py(0x00101054130), (MyCoreModel.__new__) validator: ModelValidator { name: "Model", fields: [ ModelField { name: "name", default: None, validator: StrValidator, }, ModelField { name: "age", default: 42, validator: OptionalValidator { validator: IntValidator }, }, ModelField { name: "settings", default: None, validator: DictValidator { ... }, }, ModelField { name: "friends", default: None, validator: ListValidator { strict: false, item_validator: Some( UnionValidator { choices: [ IntValidator, StrValidator, ], }, ), min_items: None, max_items: None, }, }, ], extra_behavior: Ignore, extra_validator: None, }, })
SchemaValidator(name="MyCoreModel", validator=ModelClassValidator { strict: false, class: Py(0x12fe7e7c0), (MyCoreModel) new_method: Py(0x00101054130), (MyCoreModel.__new__) validator: ModelValidator { name: "Model", fields: [ ModelField { name: "name", default: None, validator: StrValidator, }, ModelField { name: "age", default: 42, validator: OptionalValidator { validator: IntValidator }, }, ModelField { name: "settings", default: None, validator: DictValidator { ... }, }, ModelField { name: "friends", default: None, validator: ListValidator { strict: false, item_validator: Some( UnionValidator { choices: [ IntValidator, StrValidator, ], }, ), min_items: None, max_items: None, }, }, ], extra_behavior: Ignore, extra_validator: None, }, })
Many other people have said all this, there are many (much better) talks about it.
But for completeness, the good:
The bad:
The ugly:
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
#[derive(Debug, Clone)] pub struct OptionalValidator { validator: Box<dyn Validator>, } impl OptionalValidator { pub const EXPECTED_TYPE: &'static str = "optional"; } impl Validator for OptionalValidator { fn build(schema: &PyDict, config: Option<&PyDict>) -> PyResult<Box<dyn Validator>> { let schema: &PyAny = schema.get_as_req("schema")?; Ok(Box::new(Self { validator: build_validator(schema, config)?.0, })) } fn validate<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate(py, input, extra), } } fn validate_strict<'s, 'data>( &'s self, py: Python<'data>, input: &'data dyn Input, extra: &Extra, ) -> ValResult<'data, PyObject> { match input.is_none() { true => Ok(py.None()), false => self.validator.validate_strict(py, input, extra), } } fn set_ref(&mut self, name: &str, validator_arc: &ValidatorArc) -> PyResult<()> { self.validator.set_ref(name, validator_arc) } validator_boilerplate!(Self::EXPECTED_TYPE); }
mod optional; ... lots of code... ... validator_match!( type_, dict, config, ... all the other validators // unions self::union::UnionValidator, self::optional::OptionalValidator, ... )
Checkout: github.com/samuelcolvin/pydantic-core
And: github.com/samuelcolvin/pydantic
Follow me on twitter: @samuel_colvin
By Richard Carter
Discover Vilavi's unique statement jewelry that infuses everyday style with a playful spirit. From bold rings to elegant necklaces and chic body chains for both men and women, https://vilavi.co.uk/ offers more than accessories