Colorings of k-balanced matrices and integer decomposition property of related polyhedra

Article: Giacomo Zambelli

Presentation: Grigoruta Alexandru

\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}
[1111110010101001]\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}

Balanced 0-1 matrix

0-1 matrix

There is no squared submatrix of odd order, which has all rows sum and all columns sum equals to 2

\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}
[1111110010101001]\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}

K-Balanced 0-±1 matrix

0-±1 matrix

There is no squared submatrix B, with at most 2k nonzero entries, such that each row and each column has an even number of nonzero entries and the sum of all entries in B is congruent to 2 modulo 4

Sum is 0; 0 ≢ 2 mod 4

Integer decomposition property of polyhedra

\forall h \in \mathbb{Z}{+}
hZ+\forall h \in \mathbb{Z}{+}
\forall y \in hP := \{ hx | x \in P\}
yhP:={hxxP}\forall y \in hP := \{ hx | x \in P\}
\}
}\}
y= x{^1}+ ... + x{^h}
y=x1+...+xhy= x{^1}+ ... + x{^h}
\exists h \ integral \ vectors
h integral vectors\exists h \ integral \ vectors
x{^1}, ... , x{^h} \in P \ so \ that
x1,...,xhP so that x{^1}, ... , x{^h} \in P \ so \ that

Theorem 1

A = m x n k-balanced 0-1 matrix

a{^i} = rows, \ i \in [m]
ai=rows, i[m]a{^i} = rows, \ i \in [m]

 = partitions of [m]

S{_1}, S{_2}
S1,S2S{_1}, S{_2}

has the integer decomposition property

for \forall b \in \mathbb{Z}{^m} so \ that \ \textbf{0} \leq b \leq \textbf{k}
forbZmso that 0bkfor \forall b \in \mathbb{Z}{^m} so \ that \ \textbf{0} \leq b \leq \textbf{k}

where 0 is a vector with every element equal to 0, and k is a vector with every element equal to k

Totally unimodular matrices

A matrix is totally unimodular if each of its square nonsingular submatrices has a determinant of (+/-) 1

Theorem 2

A = m x n 0-(+/-)1 matrix

A is totally unimodular if and only if:

B = squared submatrix of A

There is no B with an even number of nonzero entries in each row and each column, such that the sum of all entries in B equals 2 modulo 4

Almost totally unimodular matrices

A matrix is almost totally unimodular if A is not totally unimodular and each of its square nonsingular submatrices is totally unimodular

Based on this statement and Theorem 2, a 0-(+/-)1 matrix is k-balanced if and only if it has no
almost totally unimodular submatrix with at most 2k
nonzero entries in each row

For any m × n 0,±1 matrix A, we denote by n(A) the vector with m components whose ith component is the number of −1’s in the ith row of A, and let p(A) = n(−A).

Theorem 3

Notation:

A = m x n k-balanced 0-1 matrix

a{^i} = rows, \ i \in [m]
ai=rows, i[m]a{^i} = rows, \ i \in [m]
b \in \mathbb{Z}{^m} \ so \ that \ -n(A) \leq b \leq \textbf{k} - n(A)
bZm so that n(A)bkn(A)b \in \mathbb{Z}{^m} \ so \ that \ -n(A) \leq b \leq \textbf{k} - n(A)

 = partitions of [m]

S{_1}, S{_2}
S1,S2S{_1}, S{_2}

Then the polytope

\begin{cases} x \in \mathbb{R}{^n}: a{^i}x \leq b{_i}, i \in S{_i} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a{^i}x \geq b{_i}, i \in S{_2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \leq \textbf{1} \end{cases}
{xRn:aixbi,iSi               aixbi,iS2               x1\begin{cases} x \in \mathbb{R}{^n}: a{^i}x \leq b{_i}, i \in S{_i} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a{^i}x \geq b{_i}, i \in S{_2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \leq \textbf{1} \end{cases}

is integral

k-equitable colorings

A = m x n k-balanced 0-1 matrix

a{^i} = rows, \ i \in [m]
ai=rows, i[m]a{^i} = rows, \ i \in [m]
\alpha{_i}:=min \{k, \lfloor (p{_i}(A) + n{_i}(A)) / 2 \rfloor \}
αi:=min{k,(pi(A)+ni(A))/2}\alpha{_i}:=min \{k, \lfloor (p{_i}(A) + n{_i}(A)) / 2 \rfloor \}

We say that A has a k-equitable bicoloring if its columns can be partitioned into blue columns and red columns so that the matrix    , obtained from A by multiplying its blue columns by −1, has at least     positive entries and at least    negative entries in row i, for every i ∈ [m].

\bar A
A¯\bar A
\alpha{_i}
αi\alpha{_i}
\alpha{_i}
αi\alpha{_i}

Theorem 4

Let A be a 0,±1 matrix. A is
k-balanced if and only if every submatrix of A has a
k-equitable bicoloring

λ-coloring

A \in \mathbb{R}{^{m \times n}}
ARm×nA \in \mathbb{R}{^{m \times n}}
\lambda \geq 2
λ2\lambda \geq 2
\}
}\}

λ-coloring = partition of columns from A into λ sets

I{_1},...,I{_\lambda}
I1,...,IλI{_1},...,I{_\lambda}

k-equitable λ-coloring

A \in \mathbb{R}{^{m \times n}} \ 0-\pm 1 \ matrix
ARm×n 0±1 matrixA \in \mathbb{R}{^{m \times n}} \ 0-\pm 1 \ matrix
k,\lambda \in \mathbb{Z}{_+}
k,λZ+k,\lambda \in \mathbb{Z}{_+}

k-equitable λ-coloring of A = λ-coloring

I{_1},...,I{_\lambda}
I1,...,IλI{_1},...,I{_\lambda}

of A

so that

(I{_j},I{_h})
(Ij,Ih)(I{_j},I{_h})

= k-equitable bicoloring of

A{_{I{_j}I{_h}}}
AIjIhA{_{I{_j}I{_h}}}
A{_{I{_j}I{_h}}} = I{_j} \cup I{_h} \ , \forall \ 1 \leq j < h < \lambda
AIjIh=IjIh , 1j<h<λA{_{I{_j}I{_h}}} = I{_j} \cup I{_h} \ , \forall \ 1 \leq j < h < \lambda

Theorem 5

An m × n 0-1 matrix A is k-balanced if
and only if every submatrix of A has a k-equitable             -coloring for every integer       2

\lambda
λ\lambda
\lambda \geq
λ\lambda \geq

Theorem 5 Algorithm

\mu{_{ij}} = \begin{cases} max(n{_{ij}} - {\lceil \frac{p{_i}(A)}{\lambda}\rceil}, {\lfloor \frac{p{_i}(A)}{\lambda}\rfloor} - n{_{ij}}), \ for \ i \in S{_1} \\ max(0, k-n{_{ij}}), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for \ i \in S{_2} \end{cases}
μij={max(nijpi(A)λ,pi(A)λnij), for iS1max(0,knij),                            for iS2\mu{_{ij}} = \begin{cases} max(n{_{ij}} - {\lceil \frac{p{_i}(A)}{\lambda}\rceil}, {\lfloor \frac{p{_i}(A)}{\lambda}\rfloor} - n{_{ij}}), \ for \ i \in S{_1} \\ max(0, k-n{_{ij}}), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for \ i \in S{_2} \end{cases}
Suppose \ \mu{_{st}} > 0\ for \ some \ s \in [m], \ t \in [\lambda].
Suppose μst>0 for some s[m], t[λ].Suppose \ \mu{_{st}} > 0\ for \ some \ s \in [m], \ t \in [\lambda].
There \ exists \ t' \in [\lambda] \ with:
There exists t[λ] with:There \ exists \ t' \in [\lambda] \ with:
If \ s \in S{_1} \ and \ n{_{st}} < {\lfloor \frac{p{_s}(A)}{\lambda}\rfloor}, \ then \ n{_{st'}} > {\lfloor \frac{p{_s}(A)}{\lambda}\rfloor}
If sS1 and nst<ps(A)λ, then nst>ps(A)λIf \ s \in S{_1} \ and \ n{_{st}} < {\lfloor \frac{p{_s}(A)}{\lambda}\rfloor}, \ then \ n{_{st'}} > {\lfloor \frac{p{_s}(A)}{\lambda}\rfloor}
If \ s \in S{_1} \ and \ n{_{st}} > {\lceil \frac{p{_s}(A)}{\lambda}\rceil}, \ then \ n{_{st'}} < {\lceil \frac{p{_s}(A)}{\lambda}\rceil}
If sS1 and nst>ps(A)λ, then nst<ps(A)λIf \ s \in S{_1} \ and \ n{_{st}} > {\lceil \frac{p{_s}(A)}{\lambda}\rceil}, \ then \ n{_{st'}} < {\lceil \frac{p{_s}(A)}{\lambda}\rceil}
If \ s \in S{_2} , \ then \ n{_{st'}} > k
If sS2, then nst>kIf \ s \in S{_2} , \ then \ n{_{st'}} > k

Notations needed for the algorithm:

Theorem 5 Algorithm

Start \ from \ an \ arbitrary \ partition \ I{_1}, I{_2}, ..., I{_\lambda}
Start from an arbitrary partition I1,I2,...,IλStart \ from \ an \ arbitrary \ partition \ I{_1}, I{_2}, ..., I{_\lambda}
Compute \ the \ coresponding \ \mu
Compute the coresponding μCompute \ the \ coresponding \ \mu
If \ \mu = 0, \ stop
If μ=0, stopIf \ \mu = 0, \ stop
Else \ find \ a \ new \ partition \ with \ smaller \ value \ of \ \mu
Else find a new partition with smaller value of μElse \ find \ a \ new \ partition \ with \ smaller \ value \ of \ \mu
Choose \ an \ appropriate \ t\ and \ t' \in [\lambda]
Choose an appropriate t and t[λ]Choose \ an \ appropriate \ t\ and \ t' \in [\lambda]
Compute \ a \ k-equitable \ bicoloring \ of \ A{_{I{_t}I{_t'}}}
Compute a kequitable bicoloring of AItItCompute \ a \ k-equitable \ bicoloring \ of \ A{_{I{_t}I{_t'}}}

Computing a k-equitable bicoloring can be done in strongly polynomial time

\mu \leq nm
μnm\mu \leq nm
\}
}\}

Computing a k-equitable bicoloring can be done in strongly polynomial time

Theorem 1

A = m x n k-balanced 0-1 matrix

a{^i} = rows, \ i \in [m]
ai=rows, i[m]a{^i} = rows, \ i \in [m]

 = partitions of [m]

S{_1}, S{_2}
S1,S2S{_1}, S{_2}

has the integer decomposition property

for \forall b \in \mathbb{Z}{^m} so \ that \ \textbf{0} \leq b \leq \textbf{k}
forbZmso that 0bkfor \forall b \in \mathbb{Z}{^m} so \ that \ \textbf{0} \leq b \leq \textbf{k}

where 0 is a vector with every element equal to 0, and k is a vector with every element equal to k

Proof of Theorem 1

h \in \mathbb{Z}{_+}
hZ+h \in \mathbb{Z}{_+}
y \in hP := \{ hx | x \in P\}
yhP:={hxxP}y \in hP := \{ hx | x \in P\}
y= x{^1}+ ... + x{^h}
y=x1+...+xhy= x{^1}+ ... + x{^h}
If \ h \geq 2, \ let \bar A = A \cup j{^{th}} column \ of \ A \cup...(y{_j} \ times) ... \cup j{^{th}} column \ of \ A
If h2, letA¯=Ajthcolumn of A...(yj times)...jthcolumn of AIf \ h \geq 2, \ let \bar A = A \cup j{^{th}} column \ of \ A \cup...(y{_j} \ times) ... \cup j{^{th}} column \ of \ A
if \ y{_j} = 0, \ remove \ j{^{th}} \ column
if yj=0, remove jth columnif \ y{_j} = 0, \ remove \ j{^{th}} \ column
\forall j \in [n], \ let \ C{_j}= set \ of \ indices\ of\ columns\ of \ \bar A \ that \ are
j[n], let Cj=set of indices of columns of A¯ that are\forall j \in [n], \ let \ C{_j}= set \ of \ indices\ of\ columns\ of \ \bar A \ that \ are
copy \ of \ column \ j \ of \ A
copy of column j of Acopy \ of \ column \ j \ of \ A
if \ y{_j} = 0, \ let \ C{_j} = \emptyset; \ Therefore \ |C{_j}| = y{_j}
if yj=0, let Cj=; Therefore Cj=yjif \ y{_j} = 0, \ let \ C{_j} = \emptyset; \ Therefore \ |C{_j}| = y{_j}

Proof of Theorem 1

let \ \bar a{^i}, \ i\in [m], \ the \ rows\ of \ \bar A
let a¯i, i[m], the rows of A¯let \ \bar a{^i}, \ i\in [m], \ the \ rows\ of \ \bar A
\bar A \ is \ still \ k-balanced, \ so \ by\ Theorem \ 5\ there\ exists \ a \ k-equitable
A¯ is still kbalanced, so by Theorem 5 there exists a kequitable\bar A \ is \ still \ k-balanced, \ so \ by\ Theorem \ 5\ there\ exists \ a \ k-equitable
h-coloring \ I{_1}, ..., I{_h} \ of \ \bar A
hcoloring I1,...,Ih of A¯h-coloring \ I{_1}, ..., I{_h} \ of \ \bar A
Let \ z{^1}, ..., z{^h} \ be \ the \ characteristic\ vectors\ of\ I{_1},...,I{_h}
Let z1,...,zh be the characteristic vectors of I1,...,IhLet \ z{^1}, ..., z{^h} \ be \ the \ characteristic\ vectors\ of\ I{_1},...,I{_h}
Let \ x{^1}, ..., x{^h} \ be \ the \ vectors\ in \ \mathbb{R}{^n} \ := \ x{_{j}^{s}} = {\sum_{t \in C{_j}}z{_{t}^{s}}} \ for \ s \in [h], \ j \in [n]
Let x1,...,xh be the vectors in Rn := xjs=tCjzts for s[h], j[n]Let \ x{^1}, ..., x{^h} \ be \ the \ vectors\ in \ \mathbb{R}{^n} \ := \ x{_{j}^{s}} = {\sum_{t \in C{_j}}z{_{t}^{s}}} \ for \ s \in [h], \ j \in [n]
y = x{^1} + ... \ + x{^h}\ ;\ We \ need \ to \ show\ that \ x{^s} \in P \ , \ \forall s \in[h]
y=x1+... +xh ; We need to show that xsP , s[h]y = x{^1} + ... \ + x{^h}\ ;\ We \ need \ to \ show\ that \ x{^s} \in P \ , \ \forall s \in[h]
Observe \ p(\bar a{^i}) = a{^i}y, \forall i \in [m]. \ Thus:
Observe p(a¯i)=aiy,i[m]. Thus:Observe \ p(\bar a{^i}) = a{^i}y, \forall i \in [m]. \ Thus:
if \ i \in S{_1}, \ then \ a{^i}x{^s} = \bar a{^i}z{^s} \leq \lceil p(\bar a{^i})/h \rceil = \lceil (a{^i}y)/h \rceil \leq \lceil (hb{_i})/h \rceil = b{_i}
if iS1, then aixs=a¯izsp(a¯i)/h=(aiy)/h(hbi)/h=bi if \ i \in S{_1}, \ then \ a{^i}x{^s} = \bar a{^i}z{^s} \leq \lceil p(\bar a{^i})/h \rceil = \lceil (a{^i}y)/h \rceil \leq \lceil (hb{_i})/h \rceil = b{_i}
if \ i \in S{_2}, \ then \ a{^i}x{^s} = \bar a{^i}z{^s} \geq min(\lfloor p(\bar a{^i})/h \rfloor , k) \geq b{_i}, \ since \ k \geq b{_i} \ and
if iS2, then aixs=a¯izsmin(p(a¯i)/h,k)bi, since kbi andif \ i \in S{_2}, \ then \ a{^i}x{^s} = \bar a{^i}z{^s} \geq min(\lfloor p(\bar a{^i})/h \rfloor , k) \geq b{_i}, \ since \ k \geq b{_i} \ and
\lfloor p(\bar a{^i})/h \rfloor = \lfloor (a{^i}y)/h \rfloor \geq b{_i}
p(a¯i)/h=(aiy)/hbi\lfloor p(\bar a{^i})/h \rfloor = \lfloor (a{^i}y)/h \rfloor \geq b{_i}

Theorem 1 Algorithm Complexity

Note that, since a k-equitable     -coloring can be
found in polynomial time, the proof of Theorem 1
gives a polynomial time algorithm

\lambda
λ\lambda

Input:

h \in \mathbb{Z}{_+}
hZ+h \in \mathbb{Z}{_+}
y \in hP := \{ hx | x \in P\}
yhP:={hxxP}y \in hP := \{ hx | x \in P\}

Output:

y= x{^1}+ ... + x{^h}
y=x1+...+xhy= x{^1}+ ... + x{^h}
x{^1}, ... , x{^h} \in P \ so \ that
x1,...,xhP so that x{^1}, ... , x{^h} \in P \ so \ that

Colorings and Integer Decomposition

By alexgrigi

Colorings and Integer Decomposition

  • 544