O2 and OH airglow in the mesosphere through the lens of Odin/OSIRIS Infrared Imager

Anqi Li

Doctoral dissertation

May 18th, 2022

Image from NASA

Odin

  • SubMillimetre Radiometer (SMR)
  • Optical Spectrograph and InfraRed Imaging System (OSIRIS)

MATS

  • Ultraviolet Imagers (2D)
  • InfraRed Imagers (2D)

Airglow

\mathrm{OH}*
\mathrm{O}_2(^1\Delta)
\mathrm{O}_2(^1\Sigma)

1.27 μm

1.53 μm

762 nm

Image from NASA

Odin-IRI-O2 channel

1 Orbit

N pole

S pole

EQ

EQ

\mathrm{O}(^1D)
\mathrm{O}_2(^1\Delta)
\mathrm{O}_2
\mathrm{O}
\mathrm{O}_2(^1\Sigma)

MATS

(A-band)

Odin/OSIRIS

(IRA-band)

\mathrm{O}_3
\mathrm{O}
\mathrm{O}_2
\mathrm{OH}*
\mathrm{H}
\mathrm{O}_3
vibrationally excited states
\mathrm{O}_2

Paper 1

Paper 1

Step 1:

Limb radiance          Volume emission rate (VER)

\mathrm{O}_2(^1\Delta)

VER

Step 2:

Paper 1

\mathrm{O}_3

       With special consideration for the long lifetime of 

!

\mathrm{O}_2(^1\Delta)

Assume equilibrium

\mathrm{O}_2(^1\Delta)

Close to sunrise at the equator and in the equinoxes

Odin near-terminator orbit

(Mr. Sloth in Zootopia)

!

Step 2:

Paper 1

\mathrm{O}_2(^1\Delta)

Not equilibrium

\mathrm{O}_3
\mathrm{O}_3
\mathrm{O}_2(^1\Delta)

Step 3: compare ozone

Paper 1

N pole

S pole

EQ

EQ

Summary

Paper 1

  • The quality of the retrieval scheme

  • Address the longlife time issue

  • Consistent with SMR, OS and MIPAS

  • Leading to a long term (15 yrs), high-resolution data set of daytime                             and 

\mathrm{O}_2(^1\Delta)
\mathrm{O}_3

Paper 2

Step 1:

Limb radiance -> Volume emission rate (VER)

Paper 2

\mathrm{OH}*

Step 2:

Gaussian parameters:

  • Peak VER

  • Thickness

  • Emission height

Peak VER

Height

Peak VER

Height

Paper 2

Note: NH is shifted by 6 months!

Summary

Paper 2

  • Retrieved nighttime            

  • Characterised the airglow layer by fitting a Gaussian profile

  • Depicts the well known seasonal variations 

  • Leading to a long-term (15 yrs), high-resolution data set

\mathrm{OH}*

publicly available!

Paper 3

\mathrm{O}
\mathrm{O}_2
\mathrm{OH}*
\mathrm{H}
\mathrm{O}_3
vibrationally excited states
\mathrm{O}_2

Paper 3

11-year Solar Cycle

Seasonal var. removed
\mathrm{OH}*

OH*

Ly-a

Paper 3

Peak VER / cm-3 s-1

Year

Year

Seasonal var. removed
\mathrm{OH}*

Observed

Paper 3

Ly-a anomaly / %

ZER anomaly / %

ZER anomaly / %

Modelled

Seasonal var. removed

Paper 3

\mathrm{OH}*

ZER anomaly / %

Ly-a anomaly / %

ZER anomaly / %

Summary

Paper 3

  •  IRI confirms that OH* layer displays the expected signature correlated to the solar cycle

  • .... but not near the equator

  • Simulated the diurnal variation and re-sampled the modelled data

  • The observed distortion near the equator is caused by the change in Odin local time sampling   

Paper 4

(SSW-ES)

Paper 4

SSW - ES

Monthly zonal mean 

\mathrm{OH}*

Paper 4

SSW - ES

Daily zonal mean

\mathrm{OH}*

Paper 4

SMR

IRI

IRI

Proxy

Proxy

SSW - ES

\mathrm{OH}*
\mathrm{O}_2(^1\Delta)
\mathrm{OH}*
\mathrm{O}

Nighttime!

[OH*] = pT^{-3.4} [O]

Summary

Paper 4

  • IRI has captured multiple episodic signals during the SSW-ES events

  • Incorporated H2O and T from SMR to aid our qualitative assessment

  • Calculated proxies O and OH*, which resembles well the observed data

  • The vertical transport of O is the key

Conclusion

of this thesis

  • Analysed the airglow observations made by Odin/OSIRIS infrared imager

  • Includes preparing the complete data set (>15 yrs!)

  • Contributed to a better understanding of the chemical and dynamical processes controlling the mesosphere

  • Preparation for the MATS mission

MATS - IR channel

Simulation

\mathrm{O}_2(^1\Sigma)

Counts

Supplemental slides

MSIS Temperature

Photochemical model

\mathrm{O}_2(^1\Delta)
\mathrm{O}_2(^1\Sigma)

MATS

Odin-IRI

OH nightglow

OH* peak VER SH

OH* peak VER NH

Note: NH is shifted by 6 months!

OH* peak height NH

Note: NH is shifted by 6 months!

PhD Dissertation

By ankiki

PhD Dissertation

  • 146