Robust Simulation-Based Inference

Flatiron Institute

Institute for Advanced Studies

Carol(ina) Cuesta-Lazaro

We need to talk about your forward model...

\delta_\mathrm{ICs}
\delta_\mathrm{Obs}

Reconstructed

True

p(\delta_\mathrm{ICs}, \theta|\delta_\mathrm{Obs})

Galaxy Peculiar Velocity Reconstruction

Field-Level Inference

Cross-Correlations: FRBs x Galaxies

Galaxies

Linear

Galaxy Velocity

Reconstructed

Gas

Reconstructed

Carolina Cuesta-Lazaro Flatiron/IAS

Astrophysics proliferates Simulation-based Inference

on Simulations

Carolina Cuesta-Lazaro Flatiron/IAS

x^\mathcal{O}
x^\mathcal{S}

Simulated Data

Observed Data

z^\mathcal{O}_p
z^\mathcal{O}_s
z^\mathcal{S}_s
z^\mathcal{S}_p

Alignment Loss

\mathcal{L} = \sum_{\mathcal{D} \in (\mathcal{S}, \mathcal{O})} p(x^\mathcal{D}|z^\mathcal{D}_s, z^\mathcal{D}_p) + \lambda d(z^\mathcal{O}_s,z^\mathcal{S}_s)

Reconstruction

Statistical Alignment

50\%

(OT / Adversarial)

Encoder

Obs

Encoder

Sims

Private Domain Information

Shared Information

\hat{x}^\mathcal{O}
\hat{x}^\mathcal{S}

Observed Reconstructed

Simulated Reconstructed

Shared Decoder

Shared Decoder

Carolina Cuesta-Lazaro Flatiron/IAS

A Toy Model Example

Idealized Simulations

Observations

+ Scale Dependent Noise

+ Bump

x^\mathcal{O}
x^\mathcal{S}

Carolina Cuesta-Lazaro Flatiron/IAS

Amplitude

Tilt

Tilt

p(\theta|z^\mathcal{O}_s)
p(\theta|z^\mathcal{O}_p)
p(\theta|z^\mathcal{O}_p,z^\mathcal{O}_s)
p(\theta|z^\mathcal{O}_p)

Robust SBI from Shared

p(x^\mathcal{O}|z^\mathcal{O}_p,z^\mathcal{O}_s)
p(x^\mathcal{O}|z^\mathcal{O}_s)

Visualizing Information Split

Carolina Cuesta-Lazaro Flatiron/IAS

Princeton-BahcallLunch-2025

By carol cuesta

Princeton-BahcallLunch-2025

  • 54