In Collaboration with: Enrique Paillas, Will Percival, Sandy Yuan, Yan-Chuan Cai, Sesh Nadathur, Mathilde Pinon, Arnaud de Mattia, Etienne Burtin, Ariel Sanchez, Nelson Padilla, Florian Beutler, Vanina Ruhlmann-Kleider, Daniel Forero-Sanchez, Georgios Valogiannis

Constraining vΛCDM:

 beyond two-point functions

 

Carolina Cuesta-Lazaro

IAIFI fellow - MIT/CfA

p(
)
|
\mathrm{Cosmology}

Optimise information on cosmological parameters

p(
)
|
\mathrm{Cosmology}

N-point functions

Counts-in-cell

Wavelets

Marked tpcfs

kNNs

Voids

Optimise information on cosmological parameters

p(
)
|
\mathrm{Cosmology}

N-point functions

Counts-in-cell

Wavelets

Marked tpcfs

kNNs

Voids

Surprises

Optimise information on cosmological parameters

p(
)
|
\mathrm{Cosmology}

N-point functions

Counts-in-cell

Wavelets

Marked tpcfs

kNNs

Voids

Optimise information on cosmological parameters

Surprises

Quintile autocorrelations

\xi^{qq}(s, \mu)

Quintile autocorrelations

\xi^{qq}(s, \mu)

Quintile autocorrelations

\xi^{qq}(s, \mu)

Voids

Clusters

\xi^{qg}(s, \mu)

Quintile-galaxy crosscorrelations

\xi^{qg}(s, \mu)

Quintile-galaxy crosscorrelations

\xi^{qg}(s, \mu)

Quintile-galaxy crosscorrelations

Voids

Clusters

Fisher Information

Dark Matter halos Quijote Simulations

Fisher Information

Dark Matter halos Quijote Simulations

+ Galaxy-Halo connection

+ Cut-sky

+ Alcock-Paczinsky

+ Fiber collisions

N-body simulations

Observations

+ Cosmology dependence

\theta_1 = \left\{\Omega_m^1, \sigma_8^1, ...\right\}
\theta_2 = \left\{\Omega_m^2, \sigma_8^2, ...\right\}
\theta_3 = \left\{\Omega_m^3, \sigma_8^3, ...\right\}
\theta_1 = \left\{\Omega_m^1, \sigma_8^1, \mathcal{G}^1, ...\right\}
\theta_2 = \left\{\Omega_m^2, \sigma_8^2, \mathcal{G}^2, ...\right\}
\theta_3 = \left\{\Omega_m^3, \sigma_8^3, \mathcal{G}^3, ...\right\}
\theta_1 = \left\{\Omega_m^1, \sigma_8^1, \mathcal{G}^1, ...\right\}
\theta_2 = \left\{\Omega_m^2, \sigma_8^2, \mathcal{G}^2, ...\right\}
\theta_3 = \left\{\Omega_m^3, \sigma_8^3, \mathcal{G}^3, ...\right\}
\theta_X = \left\{\Omega_m^X, \sigma_8^X, \mathcal{G}^X, ...\right\}
?
\theta_1 = \left\{\Omega_m^1, \sigma_8^1, \mathcal{G}^1, ...\right\}
\theta_2 = \left\{\Omega_m^2, \sigma_8^2, \mathcal{G}^2, ...\right\}
\theta_3 = \left\{\Omega_m^3, \sigma_8^3, \mathcal{G}^3, ...\right\}
from sunbird.summaries import DensitySplitCross

emulator = DensitySplitCross()

slice_filters = {'s': [0.1,150.]}

cosmo_params = {
  'omega_b': 0.02, 
  'omega_cdm': 0.12, 
  'sigma8_m': 0.8, 'n_s': 0.96, 
  'nrun': 0.,
  'N_ur': 2.03, 
  'w0_fld': -1.0,
  'wa_fld': 0.0,
}
hod_params = {
  'logM1': 13.9, 
  'logM_cut': 12.6, 
  'alpha': 0.75, 
  'alpha_s': 1.0,
  'alpha_c': 0.3, 
  'logsigma': -1.8, 
  'kappa': 0.1,
  'B_cen': 0.0,
  'B_sat': 0.0,
}

params = {**cosmo_params, **hod_params}

prediction = emulator(
	param_dict=parameters,
    slice_filters=slice_filters,
    return_errors=False,
)

https://github.com/florpi/sunbird

Different N-body Code +

Galaxy-Halo connection (SHAM)

BOSS CMASS DR12

0.45 ≤ 𝑧 ≤ 0.6

BOSS CMASS DR12

0.45 ≤ 𝑧 ≤ 0.6

Copy of EAS23

By carol cuesta

Copy of EAS23

  • 232