Initial Conditions Reconstruction with Stochastic Interpolants
[Video Credit: N-body simulation Francisco Villaescusa-Navarro]
Carolina Cuesta-Lazaro
IAIFI Fellow, MIT / Center for Astrophysics
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025

Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025


Initial Conditions
early Universe
Cosmological Parameters
theory
?

Observed Density Field
today




Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Hamiltonian Monte Carlo
1) Likelihood is intractable for realistic scenarios, but can get samples from simulator
2) Forward model has to be differentiable
(and relatively fast)
3) Not amortized
["Field-Level Inference with Microcanonical Langevin Monte Carlo" Bayer, Seljak, Modi arXiv:2307.09504]
["Bayesian physical reconstruction of initial conditions from large scale structure surveys" Jasche, Wandelt arXiv:1203.3639]
["Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models" Legin et al arXiv:2304.03788]
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Continuity Equation
Diffusion, Flow matching, Interpolants...
[Image Credit: "Understanding Deep Learning" Simon J.D. Prince]
Data
Base
Continuous Time Normalizing Flows
Missing pieces:
Simulation-free loss
SDE formulation
Can we regress the velocity field?
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Simulation-free!
Interpolant
Expectation over all possible paths that go through xt
["Stochastic Interpolants: A Unifying framework for flows and diffusion" Albergo et al arXiv:2303.08797]
Stochastic Interpolants
Stochastic
Generative SDE
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Generative SDE
3D U-Net
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025

True
Reconstructed


Initial Conditions
Finals

Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025

Stochastic Interpolants
NF
(Marginalizing over parameters)
1) Likelihood not necessarily Gaussian
2) Forward model no need differentiable
3) Amortized
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025


Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Memory scaling point clouds and voxels
Graph
Nodes
Edges
3D Mesh
Voxels
Both data representations scale badly with increasing resolution

Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Representing Continuous Fields

Continuous in space and time

x500 Compression?
Can we store a simulation inside a neural network?
Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
Sampling entire consistent trajectories, rather than just Initial Conditions
Scaling to large observed volumes
Training on small volume simulations
# To Do
?
Controllable Simulations

Carolina Cuesta-Lazaro IAIFI/MIT @ BASP 2025
BASP2025
By carol cuesta
BASP2025
- 137