Corentin Cadiou

 CNRS @ IAP, Paris

Early Milky-Way galax(ies) in the Megatron simulations

 

Co-Is: Harley Katz, Martin Rey

Collaborators: Oscar Agertz, Jeremy Blaizot, Alex J. Cameron, Nicholas Choustikov, Julien Devriendt, Uliana Hauk, Gareth Jones, Taysun Kimm, Isaac Laseter, Aayush Saxena, Sergio Martin-Alvarez, Kosei Matsumoto, Camilla T. Nyhagen, Autumn Pearce, Francisco Rodriguez-Montero, Victor Rufo-Pastor, Joki Rosdahl, Adrianne Slyz, Richard Stiskalek, Anatole Storck, Wonjae Yee

High-\(z\) galaxy formation challenges

What is setting the structure in the CGM?

Can we reproduce the diversity of high-\(z\) spectra?

Observational prospects of Pop. III stars?

Bridge high-\(z\) JWST/ALMA to Gaia?

[…]

Harikane+24

Cullen+24

Cameron+24

Typical path from sims to observations

Lots of assumptions

(equilibrium, geometry, element abundances, …)

\(\rho, T, Z,v\)
sometimes \(n_\mathrm{H}, n_{\mathrm{H^+}}, n_\mathrm{He}, n_\mathrm{He^+},n_\mathrm{He^{2+}},n_\mathrm{e^{-}}\)

 

Physical space

Observable

Megatron suite of simulations

  1. On-the fly radiative transfer,
  2. 81-ions non-equilibrium thermochemistry,
  3. Chemical enrichment from SN and stellar winds,
  4. Milky-Way progenitor,
  5. 4 “high-resolution” sims at \(10\,\mathrm{pc}\) comoving,
  6. 3+1 “low-\(z\)” sims at \(23\,\mathrm{pc}\) proper.

\(\Sigma\)HI

\(\Sigma\)HII

\(\Sigma\)MgII

\(\Sigma\)OII

Mocks in absorption:

Main object, \(z=4\), raw file outputs, no postprocessing

Mocks in emission:

Main object, \(z=9\), w/ nebular cont. Pyneb (Luridiana+15) & coll. Chianti (Del Zanna+21)

The Megatron suite of simulations

The Megatron suite of simulations

4 High-z ISM

The Megatron suite of simulations

4 High-z ISM

3+1 "low"-z CGM

State of the CGM of a MW progenitor at \(z \approx 3-4\)

CGM at \(z \approx 3-4\)

CGM at \(z \approx 3-4\)

CGM at \(z \approx 3-4\)

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

Relax to photo-ionisation equilibrium (PIE)

No local radiation field, no time-dependence, assume \(n_\mathrm{e}\) dominated by primordial species, self-shielding

\[\frac{\mathrm{d}n_i}{\mathrm{d}t} = 0 = \text{Recomb} + \text{Collisional} + \text{UVB}\]

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

NEq.

PIE

Assuming PIE ⇒ biased towards colder/denser gas

\(T\)

\(n_\mathrm{H}\)

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

\(\pm0.5\,\mathrm{dex}\)

CGM at \(z \approx 3-4\)

Is the CGM in equilibrium?

Non-equilibrium effects:

\(\Delta(T, n_\mathrm{H}) \sim 0.2-0.5\,\mathrm{dex}\)

⇒ \(\Delta L \sim 1\,\mathrm{dex}\)
for some lines

CGM at \(z \approx 3-4\)

CGM out of equilibrium: why?

40 kpc

  1. Local radiation dominate locally over UVB
    Anisotropic effects
     
  2. Recombination lag
    \(t_\mathrm{cool} \ll t_\mathrm{rec}\), worse with time

CGM at \(z \approx 3-4\)

CGM out of equilibrium: why?

  1. Local radiation dominate locally over UVB
    Anisotropic effects
     
  2. Recombination lag
    \(t_\mathrm{cool} \ll t_\mathrm{rec}\), worse at low \(z\)

Pop. III star formation

Pop. III star formation

A. Storck

Pop. III star formation

At least 2dex gap to observe Pop. III haloes

On their observability at high-\(z\)

Not observable (unless really lucky with a lens)

Not close to UV-bright galaxies (6/10,000 form within \(R_\mathrm{vir}\))

A. Storck

A detour to ultra-faint dwarves

\(z=8\) sim

\(z=0\) data

Excellent agreement between \(z=8\) sim and \(z=0\) local dwarf galaxies

A detour to ultra-faint dwarves

22% Fe-poor UFDs

(not observed!)

1 high-mass PISN

1 Pop. II CCSN

1 low-mass PISN

Pop. III star formation

On their observability at low-\(z\)

High-\(z\) kinematics

ALMA-like observations (at 0.1")

\(L=\textcolor{green}{\epsilon(n_\mathrm{X},T)} \textcolor{red}{n_\mathrm{X}n_\mathrm{e}}\bigotimes\mathrm{PSF}\)

 

 

Tabulated

From simulation

PRELIMINARY RESULTS

PRELIMINARY RESULTS

High-\(z\) cold disks?

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)

Overall trend:

lower-ionization lines damped with neq

\(\mathrm{CII\, 158µm}\)

\(\mathrm{OIII\, 88µm}\)

Take-home messages

  • Megatron simulation suite
    200,000+ spectra in 4 “ISM” runs (\(z\gtrapprox 8\)) ⇒ Katz, CC+   Wednesday
    3+1 “CGM” runs (\(z\gtrapprox 3.5\))                           ⇒ CC+             Wednesday
    Link to low-\(z\) UFDs                                     ⇒ Rey, ..., CC+ Wednesday
    Properties of Pop. III stars                             ⇒ Storck, ..., CC+         Thursday
    Sensitivity of line diagnostics to subgrids   ⇒ Choustikov, ..., CC+ Thursday
    Origin of steep \(\beta\) slopes                                 ⇒ Katz, CC+                  Thursday

     
  • CGM (incl. inner CGM!) is out-of-equilibrium
    Assuming PIE leads to 0.5 dex (median), and factors of
    2-3× on individual line of sight

     
  • High-\(z\) kinematics
    Very easy to make ALMA-like maps (or JWST IFU)
    from \(z=3-15\) and \(M_\star\lessapprox 10^{10}\,M_\odot\)

Model [i]

  • Based on RAMSES-RT (Rosdahl+13)
  • Out-of-equilibrium chemistry (Katz 23)
    Primordial species: \(\text{H~{\small I}-{\small II}}\), \(\text{He~{\small I}-{\small III}}\), \(e^{-}\)
    Metal ions: \(\text{C~{\small I}-{\small VI}}\), \(\text{N~{\small I}-{\small VII}}\), \(\text{O~{\small I}-{\small VIII}}\), \(\text{Ne~{\small I}-{\small X}}\), \(\text{Mg~{\small I}-{\small X}}\), \(\text{Si~{\small I}-{\small XI}}\), \(\text{S~{\small I}-{\small XI}}\) & \(\text{Fe~{\small I}-{\small XI}} \)
    Molecules: \(\text{H}_2\) & \(\text{CO}\)
  • Dust model (Rémy-Ruyer+14)
    Assuming dust-to-gas ratio
  • Heating & Cooling
    photoheating, photoelectric heating, excitation/dissociation heating, primordial, dust recombination, dust-gas collisions, metal lines
    • \(\text{C~{\small I}}\), \(\text{C~{\small II}}\), \(\text{N~{\small II}}\), \(\text{O~{\small I}}\), \(\text{O~{\small III}}\), \(\text{Ne~{\small II}}\), \(\text{Si~{\small I}}\), \(\text{Si~{\small II}}\), \(\text{S~{\small I}}\), \(\text{Fe~{\small I}}\), \(\text{Fe~{\small II}}\)

\(\text{O\small{II}}\)

\(\text{O\small{I}}\)

\(\text{N\small{I}}\)

\(\text{Mg\small{II}}\)

\(\text{Ne\small{II}}\)

\(\text{CO}\)

\(\rho\)

\(v_r\)

\(\text{O\small{III}}\)

Model [ii]

  • Turbulence-based star formation (Padoan & Nordlund 11, Agertz+21)
    \(\dot{\rho_\star} = \varepsilon_\star\rho/t_\mathrm{ff}\)
    • if \(Z<10^{-6}Z_\odot\) ⇒ Pop. III
    • if \(Z\geq10^{-6}Z_\odot\) ⇒ Pop. I & II, Kroupa
  • \(M_\star = 500\,\mathrm{M}_\odot\)
    \(M_{\star,\rm III} \sim 100\,\mathrm{M}_\odot\)
  • Feedback (Agertz+21; Rey+23)
    core-collapse SN, type Ia, winds + HN (Nomoto+06).
  • Yields (Limongi & Chieffi 18)
    AGB winds (Ritter+18)

Model [iii]

  • MW analogue @ \(z=0\)
  • Genetically engineered to form earlier
    ICs generated with genetIC
  • 2 main runs
    • constant physical \(\Delta x_\mathrm{min} \approx 20-40\,\mathrm{pc}\)
      3 runs with ≠ ICs
    • constant comoving \(\Delta x_\mathrm{min}(z=2) = 20\,\mathrm{pc}\)
      \(\Delta x_\mathrm{min}(z=5)=10\,\mathrm{pc}\)

      \(\Delta x_\mathrm{min}(z=14)=4\,\mathrm{pc}\)
      3 runs: efficient feedback, variable IMF, hypernova
  • Early forming MW mass galaxy
  • \(1.6\times 10^{4}\mathrm{M}_\odot\) DM, \(500\, \mathrm{M}_\odot\) Pop. II stars, individual Pop III stars, \(1\, \mathrm{pc}\) resolution at first star formation
  • IMF sampled chemical enrichment from individual stars for all relevant elements
  • SN (CC, Ia, HN, PISN), Winds → follows Vintergatan (validated for MW galaxies at z = 0)
  • 81 species chemistry coupled to 8 bin RT
  • PRISM ISM model
  • Enhanced resolution in the CGM
  • Calibration sims with IMF variations and physical model variations

Introducing MEGATRON

Processes that control ion and molecular properties:

  • Collisional, photo, cosmic-ray ionization
  • Radiative, dielectronic, dust recombination
  • Charge exchange

RAMSES-RTZ + PRISM: Non-equilibrium chemistry coupled to on-the-fly radiative transfer

 

Processes that control gas temperature:

  • Cosmic-ray, photo, photo-electric, H2, dust heating
  • Primordial, \(\mathrm{H}_2\), CO, metal, dust* recombination, dust-gas collisional cooling
  • Adiabatic (expansion), shocks (e.g. SN, turbulence), gravitational, etc.

Katz, CC 2024

\(\Sigma\)OI

\(\Sigma\)OII

\(\Sigma\)OIII

Create “twin” simulation relaxed to photo-ionization equilibrium (PIE):

  • Haardt-Madau UV bg,
     
  • Local Habing field (\(6-13.6\,\mathrm{eV}\)),
     
  • Dust-to-gas ratio (Rémy-Ruyer+14),
     
  • Iterate until

    \(\dfrac{\mathrm{d} n_{X_i}}{\mathrm{d} t} = 0\quad\) at fixed \(T\).

Code: Katz & CC, in prep.

Electron abundances

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)

Effect on \(\mathrm{He\,III}\)

Data within \(r>R_\mathrm{vir}/4\)

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)

Effect on \(\mathrm{He\,II}\)

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)

Overall trend:

high-ionization lines boosted with neq

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)

\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)

Overall trend:

intermediate-ionization lines unchanged

Tillson+15

Dekel&Birnboim 06

High-\(z\):
most of mass + AM flow along filaments

⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))

HeII @ (PIE)

\(M=1.2\,10^9\,\mathrm{M_\odot}\)

HeII @ (neq)

\(M=8.8\,10^8\,\mathrm{M_\odot}\)

+\(30\%\)

[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)

[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)

[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)

[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)

[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)

[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)

[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)

[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)

Cooling length refinment

Refining where

\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times {t_\mathrm{cool}},\)

(Rey+23)

  • up to \(80\,\mathrm{pc}\)
  • turned on at key moments

Cooling length refinment

\(+120\,\mathrm{Myr}\)

Quasi-Lagrangian + Jeans

Quasi-Lagrangian + Jeans + CGM ref

Cooling and chemical timescales go as \(n^2\)

Observables in the CGM?

Absorption

Emission

Zou+24

Pen+25 (\(z\approx2.8\))

⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))

Modelling challenge:

  • space filling (\(\sim 30\times\) more \(V\) in CGM than ISM);
     
  • low-density (\(\lessapprox 10^{-2}\,\mathrm{m_p/cm^{-3}}\));
     
  • multiphase (see rev. by Fumagali 24);

Gible project, Ramesh+24

(My) route to high-\(z\) kinematics

 

  • Effect of cosmo. env. (Musso+19, Kraljic+20,21, Cadiou+21, Storck+24)
  • Cosmology-galaxy connection (Cadiou+21)
  • Cosmological accretion (Cadiou+19, Kocjan+24)
  • But what are we actually observing? This talk

Low grav. tides

Large grav. tides

  • cosmological environment      \(\sim 50-100\,\mathrm{Mpc}\)
  • resolve Strömgren spheres     \(\sim 10\,\mathrm{pc}\)
  • radiative-transfer
  • proper multi-phase ISM           \(T \lesssim 10^4\,\mathrm{K}\)
  • Track ion abundances out-of-equilibrium

Wishlist for proper modelling of emission lines + kinematics

Background: Vintage Gordon (follow-up of Vintergatan) simulation
(PI: Cadiou)

\(t_\mathrm{chem} \propto 1/n^2\)

\(t_\mathrm{dyn} \propto 1/\sqrt{n}\)

\(t_\mathrm{burst} \sim 10-100\,\mathrm{Myr}\)

Halo-mass—stellar-mass relation

VG: Vintergatan (Agertz+21)
⇒ Well-regulated by \(z=0\)

High-resolution early \(<1\mathrm{pc}\)

Constant resolution \(\sim 20\,\mathrm{pc}\)

Most massive galaxy, edge-on

Most massive galaxy, face-on

Difference \([\mathrm{C{\small{II}}}]\)-weighted vs. \(n_\mathrm{H}\)-weighted

Early results

Stacked profiles

36 galaxies @ \(z=10\)

\(8.3\leq\log(M_\star/\mathrm{M}_\odot)\leq 10.0\)

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

Only gas within \(\pm0.5\,\mathrm{kpc}\) height

All gas

Does non-equilibrium cooling matter?

Switching to equilibrium cooling

  • same stellar mass, but
  • ISM has much less cold gas

Katz 22

Results from Eddie

Me

Tracer particles

High-cadence sampling

Puns

Martin Rey

Pop II modeling

Cooling length refinment

ICs generation

Harley Katz

RAMSES-RTZ

Pop III modeling

Calibrations

Stellar mass vs. Halo mass

CP not too bad compared to Vintergatan (Rey+23)
CC underregulates

Constant comoving

Constant physical

Varying IMF to the rescue?

Same model, but high-\(z\) dwarf \(M_\mathrm{dm}=10^{9}\,\mathrm{M}_\odot\) at \(z=6\)

Cooling length refinment

Refining where

\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times \dfrac{1}{\Lambda_\mathrm{net}},\)

(Rey+23)

  • up to \(80\,\mathrm{pc}\)
  • turned on at key moments

\(z=5.8\)

\(z=5.8(+2\,\mathrm{Myr})\)

\(20\,\mathrm{kpc}\)

Cooling length refinment

How much does it cost?

\(\times 3\)

\(\times 70\)!

Conclusions

It works and stay tuned for results?

Early Milky-Way in the Megatron sims

By Corentin Cadiou

Early Milky-Way in the Megatron sims

  • 29