https://lc0.org/slides
2008
October 2017
January 2018
Chess
Go
January 2016
October 2017
December 2017
Leela
Leela Zero
Leela Chess Zero
AlphaGo
AlphaGo Zero
AlphaZero
AlphaZero (?)
Stockfish 10
Stockfish 9
Stockfish 8
Grandmasters
Me
TCEC12 – 32th (last)
TCEC 13
– 21st
CCC 1
– 3rd
CCC 2
– 3rd
TCEC 15
– 1st
CCC 8
– 2nd
TCEC CUP 3
– winner
CCC 7
– 1st
CCC 6
– 2nd
TCEC 14
– 2nd
TCEC CUP 2
– winner
CCC 5
– 2nd
CCC 4
– 2nd
CCC 3
– 2nd
TCEC CUP 1
– semifinals
June 2018
January 2019
June 2019
Chess
Game Tree
10¹²³ nodes
0.64
0.01
-8.93
0.39
Traditional Engines:
Eval function
Search algorithm
Move ordering
1.14
0.28
1.14
0.28
0.64
0.01
-8.93
0.39
Min:
-8.93
Min:
0.01
Min:
0.28
Max:
0.28
– Principal Variation
Traditional Engines:
Eval function
MiniMax (Search algorithm)
Move ordering
Eval function
Search algorithm
Move ordering
-8.93
?.??
Min:
0.28
Traditional Engines:
Eval function
Search algorithm
Move ordering
Max:
0.28
Min: -8.93
Already worse than 0.28,
prune remaining subtrees.
?.??
?.??
α/β pruning
Eval function
Search algorithm
Move ordering
Monte Carlo Tree Search
(kind of)
- Start with only root node
visits →
- Route visits to subtrees, prefer more "promising" subtrees
- Results in very unbalanced trees
- Best move is the subtree with most visits
- Most "promising" subtree is combination of:
- Initial "guess" of what the best move will be
(when a subtree doesn't yet have many visits) - The subtree with the highest average eval of its nodes (when subtree already have many nodes)
- Underexplored subtrees (much less visits than siblings)
- Initial "guess" of what the best move will be
Q = average value of eval in a subtree
N = number of nodes in subtree
V = eval of a single node
C = a constant to balance Q and U
P = initial guess of move strength
Grows when sibling subtrees get visits, shrinks when own subtree gets visits
U starts high when subtree is small, then gives way to Q when subtree grows
Nxf6
Qg3
Qe3
Qe2
Subtree size (N)
vs Total visits
Subtree eval (Q)
vs Total visits
Subtree eval (Q)
vs Subtree size (N)
Initial guess of move
strength (P)
MiniMax
MCTS
-
Faster
tens of millions nodes per second
-
Slower
hundreds of thousands nodes per second
- Doesn't keep tree in memory
Searches of 100 000 000 000s nodes are usual
- Keeps tree in memory
only searches up to 100 000 000s nodes are realistic
- Tree is balanced
- Tree is very unbalanced
focuses much more on promising variants
- Final eval is taken from a leaf node
unstable when eval function is noisy
- Final eval is average of all nodes
stable when eval function is noisy
-
Only runs eval function for leaf nodes
at certain depth
- Runs eval function for all visited nodes
Eval function
Search algorithm
Move ordering
Move ordering
Q
-1
1
Position eval
(-1 .. 1)
Input Planes
(chess position)
Residual
Neural Network
(40 convolutional layers)
Initial estimation how "promising" move is.
- For every [from→to] square pair, probability that the move will the best.
(+some more for promotion moves)
Value head
Policy head
if (Pt == BISHOP)
{
// Penalty according to number of pawns on the same color square as the
// bishop, bigger when the center files are blocked with pawns.
Bitboard blocked = pos.pieces(Us, PAWN) & shift<Down>(pos.pieces());
score -= BishopPawns * pos.pawns_on_same_color_squares(Us, s)
* (1 + popcount(blocked & CenterFiles));
// Bonus for bishop on a long diagonal which can "see" both center squares
if (more_than_one(attacks_bb<BISHOP>(s, pos.pieces(PAWN)) & Center))
score += LongDiagonalBishop;
}
// An important Chess960 pattern: A cornered bishop blocked by a friendly
// pawn diagonally in front of it is a very serious problem, especially
// when that pawn is also blocked.
if ( Pt == BISHOP
&& pos.is_chess960()
&& (s == relative_square(Us, SQ_A1) || s == relative_square(Us, SQ_H1)))
{
Direction d = pawn_push(Us) + (file_of(s) == FILE_A ? EAST : WEST);
if (pos.piece_on(s + d) == make_piece(Us, PAWN))
score -= !pos.empty(s + d + pawn_push(Us)) ? CorneredBishop * 4
: pos.piece_on(s + d + d) == make_piece(Us, PAWN) ? CorneredBishop * 2
: CorneredBishop;
}
}
if (Pt == ROOK)
{
// Bonus for aligning rook with enemy pawns on the same rank/file
if (relative_rank(Us, s) >= RANK_5)
score += RookOnPawn * popcount(pos.pieces(Them, PAWN) & PseudoAttacks[ROOK][s]);
// Bonus for rook on an open or semi-open file
if (pos.is_semiopen_file(Us, file_of(s)))
score += RookOnFile[bool(pos.is_semiopen_file(Them, file_of(s)))];
// Penalty when trapped by the king, even more if the king cannot castle
else if (mob <= 3)
{
File kf = file_of(pos.square<KING>(Us));
if ((kf < FILE_E) == (file_of(s) < kf))
score -= TrappedRook * (1 + !pos.castling_rights(Us));
}
}
Traditional eval
NN-based eval
- Requires human chess expertise
- Can learn all by itself (no humans!)
- Faster
typically tens of millions of evals per second
- Slower
typically tens of thousands of evals per second
- Typically superficial
doesn't recognize patterns, relies on deeper counting
- Insightful
sees positional patterns and even basic tactics
- Works on CPU
- Benefits from GPU
- Evaluates one position at a time
- Needs batches of hundreds of positions to be fast
- Computes eval in pawns
e.g. knight=3.1 pawns, bad bishop -0.4 pawns penalty
- Computes expected outcome
-1 – certain loss, 1 – win, 0.4 – win is likely
110 input planes
isRep
⇈⇈ Current position ⇈⇈
⇊⇊ 7 previous board positions ⇊⇊
= 0.0
= 1.0
= 0.06
=
=
white can 0-0
white can 0-0-0
black can 0-0
black can 0-0-0
is black's move
Moves without capture
(3/50) = 0.06
Legend
d4c4 | c8d6 | f2f3 | d5a8 | e7e4 | e2e4 | b4b8 | g2d2 | d4f4 | d2a2 | c7b8b | h3f2 | g4d1 | b8a6 | a1b3 | a6b7 | c6c8 | g7e7 | h2f4 | b3a2 | f1f4 | g3g4 | d4d7 | d6g3 | g7a7 | g5g3 | a3c3 | h2d6 | a1d4 | c8c5 | b6c4 | g1g6 |
f7f6 | g3h3 | a1d1 | b7a8 | e5e3 | b6g1 | g4d7 | b8b6 | c7c6 | f5b1 | f6h4 | g2a8 | h4d4 | c3c1 | e1c2 | d5d8 | f4h2 | f7f8b | d4e3 | c7b8q | f1g1 | d6c8 | d6e4 | e3d3 | e7d8r | f2e2 | b5d5 | e3c1 | c3h3 | h5e5 | g3h1 | e6d6 |
a3a1 | g5g4 | f4h6 | f7h5 | d7e8q | f6b2 | c7h2 | a7b8 | g4g3 | g6e7 | d3d8 | h1h4 | c8g4 | f8b4 | e4g2 | a3b1 | h7h8b | c8e8 | h2f3 | g5g6 | d5d4 | a8d5 | h3a3 | b8f8 | f5f3 | b6b4 | f7d8 | d4a7 | c5f8 | a1h8 | h4g4 | g2e3 |
c1a3 | b1h7 | a2b2 | b6d5 | e5b5 | f2g1 | f7d5 | h2h7 | a7c5 | a4d7 | c6d6 | a6b6 | f3d1 | g4f2 | g7h8 | a2d5 | a3b5 | b6b8 | d6d5 | d7b5 | c3b4 | f3g5 | g6h6 | b6b5 | f8e8 | d5b7 | h8b8 | b5e5 | g7g1 | g7f5 | g1g8 | d4b3 |
b7a6 | a5h5 | e1f2 | g2c2 | c4b4 | h3f5 | h2g2 | c8a8 | c3f6 | d7f8 | a3g3 | h5h6 | d4f6 | b5d7 | d3c2 | a8e8 | h7b7 | d8d2 | e4e7 | f6f1 | g8a8 | b6d6 | a8a2 | c7a5 | b5a5 | e4c6 | h7d7 | d1d8 | a7b8q | h6h4 | a7a8q | d6d8 |
g7a1 | e4f6 | c5c6 | a6b5 | g6h7 | h8e5 | f8b8 | c8d7 | a5b3 | h4e1 | e8b5 | d1f3 | c1g5 | h6f6 | c6a4 | g3c3 | b2b7 | c6b4 | a1a3 | h4e7 | a6a4 | d7a7 | f3f6 | c2b4 | b5f1 | d1c3 | e8g8 | a3a6 | h7f6 | f1e2 | e4e6 | e4c3 |
d7b7 | h4a4 | b3b7 | f2g2 | c8c2 | a5f5 | h4h6 | c1b3 | d8b6 | a3b2 | g6h8 | b7c7 | g2f3 | h5g3 | h7d3 | b8a7 | f4h4 | d3b5 | a8g8 | a4a8 | f7g7 | a7h7 | e1d1 | a4c3 | b5h5 | b4b1 | d5e7 | e1g2 | e7f5 | c7e5 | c2d4 | f7f1 |
a1g7 | d7d2 | h7g7 | d7d1 | f1b1 | b4e1 | a5c5 | a7f2 | a2a8 | b2c3 | d5d7 | a6a7 | h3f3 | a3c2 | d7c7 | f4c4 | d2d4 | a5d2 | c5c8 | f6f3 | h2f1 | b2h2 | g4e5 | e2c3 | b3d3 | f7b7 | d2e4 | c3a1 | b8g8 | h4h8 | d8a8 | g8c4 |
d5c7 | f7f8r | g1h3 | a5e1 | c2e1 | e4b4 | b1g6 | a4c4 | e4e8 | f5e6 | d8c8 | f6g5 | f7g8r | h4g3 | g5e4 | e1e7 | c2d2 | e6g7 | c4d5 | d3f2 | e7b7 | d5c6 | c8h8 | f4e6 | b7d8 | c7g7 | f1g3 | d2d1 | f4g5 | g7g8 | e1c1 | a4b5 |
g8f7 | c7b5 | b1d1 | e4c2 | b6b7 | a8b8 | c1c7 | h7a7 | b5c6 | g7g8r | f6g7 | e1d2 | a3a7 | c6e6 | a7b6 | e6a2 | b8b5 | d8d5 | a8h1 | g1f3 | d4a4 | d8c7 | f8g6 | e3e5 | e2d1 | f6e7 | f8f6 | d2b1 | c6c7 | a7a2 | a6a3 | c5f5 |
g7f8r | e5c4 | b4c2 | d8d7 | d3e1 | g3g7 | a6a8 | e2e1 | e8c8 | f1g2 | c2c8 | g2b2 | e3a7 | h3h6 | h7h2 | g1g3 | g2f1 | h7g5 | g7h7 | c7d5 | a8c8 | e7a3 | g4g5 | g8f8 | h4f5 | b5e8 | g7g3 | h2e2 | g5d2 | b1a2 | a8e4 | b5b7 |
g6f6 | e6c7 | g7g8q | a6e2 | e4h1 | d5e5 | h4g6 | e2b5 | d7c8 | b7f7 | e2a6 | a4h4 | e7c6 | h2h1 | f7b3 | d5f3 | a7d7 | d3f3 | d1d2 | f7f3 | f3f8 | a2c1 | b7e4 | f7d7 | d8d3 | h1c1 | b6d7 | g7d7 | c4b6 | a5b4 | h4h1 | b3e3 |
d1b1 | c5e4 | b7c8 | a1a8 | c7f4 | d5b5 | b2a4 | g5h5 | a3b4 | h1f3 | e3h3 | f2b2 | e8d6 | d3d6 | a6e6 | h4f3 | b4d4 | c3e4 | f5h4 | a4g4 | d3f4 | d2h2 | c8b8 | c2c4 | h3g3 | h6f5 | g6b6 | b2d3 | b2c2 | b4b3 | e8a8 | b8b1 |
c3c6 | c7a7 | e5f7 | d8g8 | b6b2 | h6g4 | a4a6 | d7d8q | d4d6 | a5b7 | b3d2 | e4f2 | h1h5 | h4h3 | b3b1 | b8b4 | e4g6 | c7c8q | f4d5 | c8e7 | g5g8 | e5e7 | f4f3 | g5c1 | e5d4 | a6c8 | f2h1 | h2e5 | f2d2 | f3e5 | e2g3 | c6a7 |
h4g2 | h6c6 | f3d5 | h4f6 | f3g1 | e7f8 | a7g7 | h4e4 | e4a4 | d3b1 | f4d6 | e6f7 | c6f3 | d6f6 | e8f8 | d7d8 | c4a3 | b1e4 | f5h7 | f7e8b | g1e1 | b7d6 | d7f6 | c5d5 | f8h8 | d4c3 | g3h5 | e3e6 | f6f2 | c3a3 | a6f6 | f2e3 |
a4b4 | a7g1 | h7g8b | e5d3 | e5h8 | a4c5 | d8f7 | f5e7 | e8h8 | g2f4 | e1h1 | e8d7 | f7f5 | e3d2 | b6a6 | c7b8r | e2c4 | b7g7 | e1a5 | g4g6 | f5c8 | a7a3 | h3c3 | c6f6 | b6b1 | g7c3 | g3b8 | f6g6 | e5c6 | d4h4 | b2b5 | f6e8 |
f5f6 | a1c1 | d7c5 | f4g6 | b6e6 | a4a3 | g3h2 | c1g1 | h7h4 | h1b1 | b4a6 | e3f5 | c1b2 | e2f3 | d6b8 | e7g5 | c4c8 | b2b6 | g4a4 | f5f7 | c3a4 | g6g5 | h6h5 | c7a6 | e4e5 | c7d6 | e3e1 | h5c5 | a5a6 | b5a6 | h2h8 | a2f7 |
h8g6 | e5a5 | d6d3 | h5g7 | d5f7 | h3e3 | b3a3 | c2h7 | a7b8b | f2c2 | d7b8 | g6f5 | d8e8 | a1g1 | h8f7 | d2b4 | d7e7 | h6g5 | e2g2 | h6d2 | d7d4 | h7c2 | h5h1 | h8g8 | h8f8 | g8g4 | c4b2 | d7e8b | e8b8 | d1d7 | a6c7 | c2a4 |
b3d5 | e4d6 | c5d3 | d6f5 | c4d3 | b4a5 | d7c8q | b2a3 | c1d1 | a7b7 | c7c2 | g3b3 | f6e6 | d5c3 | c6b8 | b4b5 | d5c4 | h5h2 | d5b6 | g7b7 | c5e5 | h7h8q | c6a6 | f6f7 | f7g8b | a4e8 | g7g8b | f6e4 | d1d6 | c5h5 | f6a6 | d5g5 |
c4e4 | g7h6 | b1g1 | b6f6 | g6g8 | b3c5 | c4e2 | e5e4 | a7d4 | b8d6 | c4d6 | h5h3 | a1f1 | h6a6 | g8d5 | f2f7 | f3a8 | c5a5 | a2g2 | f8h7 | e5f4 | c4f1 | d7e8r | a7c8 | e7f7 | h7e7 | g6h5 | f8e6 | f7c7 | h2h4 | c5a4 | e6c6 |
g4f4 | a4c6 | d4c5 | d6f7 | b4b6 | c8c1 | d7e8 | g5d8 | a7a5 | a3c4 | c6b5 | e3c3 | a6c4 | a5c4 | f5b5 | d1d4 | b7c8b | c3a2 | g6d6 | e2f4 | b1b4 | e1a1 | c2c5 | c1e1 | e7f8b | d2b2 | f7c4 | f4g4 | b4a4 | c8g8 | b3f3 | b7g2 |
e2g1 | b6g6 | h2c2 | e3e4 | e8e6 | f6h8 | b7b5 | g4e3 | d8d6 | e8e2 | b3e6 | c6h1 | e2a2 | d7g7 | c3g3 | d4d3 | d6c5 | d2c4 | c6e8 | e4d4 | e3d1 | d5a5 | e1f1 | b5c4 | e6h6 | c1c8 | c8f8 | e5a1 | g7d4 | d3e2 | g5f7 | f5g6 |
h1b7 | b2g2 | f7g8 | h1g1 | h3d3 | g5h3 | d8e7 | d2f1 | c4b3 | c4a2 | e3f2 | e5c3 | g6b1 | f4b4 | h5f4 | f3g4 | c6e7 | e6d5 | d3d4 | h8c8 | g7h5 | e2d3 | a4e4 | b2b8 | h7c7 | h6g8 | c1h1 | c1c3 | c6d5 | f5e3 | g5a5 | f2f8 |
e3f4 | g5e3 | b8b2 | b7a8q | e8e1 | e7c8 | d7h3 | f6h5 | e8e5 | a3a2 | d6b6 | c5c4 | h8a1 | h1e4 | b7a8b | f1a1 | f8d6 | h6h8 | b7b3 | h2h5 | c4a5 | f2e1 | g1g5 | b5e2 | f7e8q | c7c5 | g4b4 | c1c5 | f6c3 | f8f7 | c6e4 | e3g5 |
h1c6 | e2c1 | c3d4 | f8a3 | h1d1 | e7c7 | e7f8r | g1e3 | b5b4 | b3c1 | h6f7 | h2b8 | b1b2 | f8g7 | g6d3 | h4h2 | b1c3 | h7b1 | c7d8 | f5h3 | d5d1 | c7b8 | d4g4 | f7f8 | h1e1 | b5b8 | c3c5 | b2b4 | c6c4 | b8b7 | c7c3 | d7e6 |
f4f8 | c5c2 | f2a2 | h4d8 | g4h6 | g5f6 | d3d2 | h8g7 | h8h2 | g8f6 | f4g2 | f8d8 | e7e6 | f2h2 | g2c6 | e3d4 | a4a2 | b5d3 | d7d8r | e2f2 | f4h3 | d4b4 | e2e3 | g4e6 | g6g1 | e2d2 | g3e1 | c3b5 | h1g2 | b3g3 | d3f1 | h7h3 |
h3g4 | g6f8 | c7c4 | e3f3 | d3c5 | g4c4 | d6a3 | c6b7 | d2g5 | e6g6 | a5a8 | h8h5 | c7f7 | g1a1 | f8f5 | b5a7 | g7h8r | h7g8q | e1b4 | f5g4 | c3f3 | b7b6 | d6d1 | d3d5 | c4e5 | e1e5 | d2e2 | f6d4 | d8b7 | a4f4 | d2g2 | h8d4 |
c4c5 | e7f8q | f3h3 | b7e7 | b8e5 | a8a5 | e5d6 | h1h8 | e4f3 | d2b3 | f4f5 | b1f1 | h2g1 | b4h4 | h6f8 | d4f3 | d1h1 | h8c3 | e6d7 | d1f2 | a3d3 | d5d3 | b1d2 | e5c5 | g8g3 | a7b8r | d5e4 | b4a2 | h6c1 | f8e7 | d4h8 | e5h2 |
a3c1 | d5a2 | h3h8 | e2b2 | g4e2 | d5c5 | f5f8 | c6d4 | f7h7 | c1f4 | e7g8 | c6g2 | g4g7 | a2a4 | g2f2 | f6d6 | e3g2 | e6c5 | d6d4 | b7a7 | c5e3 | c8d8 | e3e8 | d6c7 | f1f7 | e7d7 | e3g4 | c5b6 | e6b6 | b3g8 | b3b8 | g5g7 |
c6c2 | b1b5 | b1b3 | b2e2 | b8c7 | d1e1 | e4b1 | g8b8 | a6c5 | c1b1 | d1d5 | h5f7 | h5e8 | b2f2 | e6f8 | e5g3 | h7f7 | b2b3 | d4e2 | f2h4 | h3d7 | f4d2 | e1d3 | g5f5 | f2f4 | g2g8 | c6g6 | h2b2 | a8f3 | b4g4 | g7e6 | e2e6 |
b2d1 | c2c6 | e6e8 | g4f5 | c2e4 | g2g7 | b4a3 | d6e6 | d7f5 | c8a6 | g3g5 | f3f7 | e7b4 | c1c4 | h3h4 | e3b6 | a4a1 | b7b2 | e7e8q | a8g2 | b1c1 | c7e7 | e6e2 | a3h3 | h7g8r | g1c1 | e4e3 | d8a5 | b6c7 | h8h1 | e7h4 | b1h1 |
f3h1 | f4f6 | h6f4 | a8a1 | g6c6 | b6c6 | b3b2 | c6d7 | e1e4 | b3h3 | f8c8 | g4g8 | g5e5 | h1g3 | a2e6 | c7e6 | c7g3 | c7h7 | a3a4 | e5g5 | d2f2 | d3a3 | a4b6 | a1f6 | g3f2 | a2c3 | h3h5 | h5g5 | b7c6 | f1h1 | e6e4 | f1d2 |
Neural Network output
1859 numbers:
- Position value (expected game outcome) (-1.0 .. 1.0)
- For each of the 1858 moves, probability that it will end up being chosen (0.0 .. 1.0)
Initially NN parameters are random
Contributors generate
Lc0 vs Lc0
games
NN training:
Old network + training data =
new network
Neural
Network
NN parameters
Training data
new NN
parameters
latest NN parameters
old NN
parameters
Training
data
100 000 positions per minute
Training
Training data
Move | Visits |
---|---|
e2e4 | 312 |
d2d4 | 193 |
g1f3 | 108 |
c2c4 | 79 |
g2g3 | 42 |
b2b3 | 38 |
f2f4 | 29 |
b1c3 | 10 |
⋯ | ⋯ |
Move | Visits |
---|---|
d7d5 | 218 |
g8f6 | 205 |
c7c5 | 142 |
g7g6 | 102 |
d7d5 | 89 |
b2b3 | 29 |
f2f4 | 9 |
b1c3 | 5 |
⋯ | ⋯ |
Move | Visits |
---|---|
e1f2 | 293 |
e2e4 | 183 |
g2g3 | 112 |
g1h3 | 89 |
e2e3 | 53 |
f2f4 | 45 |
d2d3 | 14 |
c2c3 | 9 |
⋯ | ⋯ |
Move | Visits |
---|---|
d8h4 | 717 |
d7d6 | 34 |
g7g5 | 21 |
f7f5 | 12 |
d7d5 | 6 |
b7b5 | 3 |
h7h5 | 2 |
f8b4 | 1 |
⋯ | ⋯ |
checkmate
0-1
black wins
V=1
V=-1
V=1
V=-1
P
P
P
P
Self play, 800 visits (≈25ms) per move
NN doesn't know rules of chess
Move | Visits |
---|---|
d5e7 | 657 |
c2c3 | 12 |
c2c4 | 9 |
... | ... |
Move | Visits |
---|---|
... | 0 |
48 | 9 |
... | 0 |
452 | 657 |
... | 0 |
1126 | 12 |
NN doesn't know:
- Meaning of move indices
(e.g. that move "452" is related to "d5" or "e7") - How pieces move
(never sees result of move) - Which moves are legal
- Goal of the game
(i.e. role of king, checkmate)
NN is trained:
- whether position is winning
- move probabilities per index
V=1
V=1
Training Server
- Noisy GPUs
- Slow Internet
Web server
lzero.org
- Silent
- Fast Internet
Data backup server (data.lczero.org)
- Large disk
Contributors
- Generate 100 000 chess moves per minute
- training data (positions with P and V)
- neural network weights
Jul 2018
Sep 2018
Nov 2018
Jan 2019
Mar 2019
May 2019
1.0M
0.5M
1.5M
2.0M
2.5M
Generated games per day
- test10
- test20
- test30
- test40
https://lc0.org/contributions
Openings preference (test30)
https://lc0.org/openings
Neural Network
-
Larger network
-
Trying ideas from research papers
-
Better opening variety
(opening book, chess960) -
Different network versions play vs each other
Search
What's next?
-
Support transpositions
-
Improve scalability
-
Analysis support
-
Fix known weaknesses:
-
Time management
-
Sudden blunders
-
Better endgame
-
Non-standard openings
-
https://lczero.org/
– project page
https://lc0.org/start
https://lc0.org/play
https://lc0.org/watch
https://lc0.org/github
https://lc0.org/chat
https://lc0.org/forum
https://lc0.org/blog
https://lc0.org/downloads
https://lc0.org/slides
– how to start with Lc0
– where to play Lc0 online
– where to watch Lc0 playing
– our code at Github
– our Discord chat
– our forum
– our blog
– download Lc0
– these slides
Lc0
By Alexander Lyashuk
Lc0
Talk at Big Techday 12, organized by TNG Technology Consulting GmbH. Happened on June 7th, 2019.
- 9,768