Soss: Lightweight Probabilistic Programming in Julia

Chad Scherrer

June 16, 2023

Managed Uncertainty

Rational Decisions

Bayesian Analysis

Probabilistic Programming

  • Physical systems
  • Hypothesis testing
  • Modeling as simulation
  • Medicine
  • Finance
  • Insurance

Risk

Custom models

A disconnect between the "user language" and "developer language"

X

3

Python

C

Deep Learning Framework

  • Harder for beginner users
  • Barrier to entry for developers
  • Limits extensibility

?

  • Simple high-level syntax
  • Uses GeneralizedGenerated.jl for flexible staged compilation
  • Model type parameter includes type-level representation of itself
  • Allows specialized code generation for each primitive(model, data)




P(\mu,\sigma|x)\propto P(\mu,\sigma)P(x|\mu,\sigma)
\begin{aligned} \mu &\sim \text{Normal}(0,5)\\ \sigma &\sim \text{Cauchy}_+(0,3) \\ x_j &\sim \text{Normal}(\mu,\sigma) \end{aligned}

Theory

Soss

julia> Soss.sourceLogpdf()(m)
quote
    _ℓ = 0.0
    _ℓ += logpdf(HalfCauchy(3), σ)
    _ℓ += logpdf(Normal(0, 5), μ)
    _ℓ += logpdf(Normal(μ, σ) |> iid(N), x)
    return _ℓ
end
@model N begin
    μ ~ Normal(0, 5)
    σ ~ HalfCauchy(3)
    x ~ Normal(μ, σ) |> iid(N)
end
m = @model x begin
    α ~ Normal()
    β ~ Normal()
    σ ~ HalfNormal()
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
julia> m(x=truth.x)
Joint Distribution
    Bound arguments: [x]
    Variables: [σ, β, α, yhat, n, y]

@model x begin
        σ ~ HalfNormal()
        β ~ Normal()
        α ~ Normal()
        yhat = α .+ β .* x
        n = length(x)
        y ~ For(n) do j
                Normal(yhat[j], σ)
            end
    end

Observed data is not specified yet!

julia> post = dynamicHMC(m(x=truth.x), (y=truth.y,)) |> particles
(σ = 2.02 ± 0.15, β = 2.99 ± 0.19, α = 0.788 ± 0.2)

Posterior distribution

Possible best-fit lines

Start with Data

Sample Parameters|Data

Sample Data|Parameters

Real Data

Replicated Fake Data

Compare

Posterior

Distribution

Predictive

Distribution

pred = predictive(m, :α, :β, :σ)
@model (x, α, β, σ) begin
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
m = @model x begin
    α ~ Normal()
    β ~ Normal()
    σ ~ HalfNormal()
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
postpred = map(post) do θ 
    delete(rand(pred(θ)((x=x,))), :n, :x)
end |> particles

predictive makes a new model!

pvals = mean.(truth.y .> postpred.y)

Where we expect the data

Where we see the data

 m2 = @model x begin
     α ~ Normal()
     β ~ Normal()
     σ ~ HalfNormal()
     yhat = α .+ β .* x
     νinv ~ HalfNormal()
     ν = 1/νinv
     n = length(x)
     y ~ For(n) do j
             StudentT(ν,yhat[j],σ)
         end
 end
julia> post2 = dynamicHMC(m2(x=truth.x), (y=truth.y,)) |> particles
( σ = 0.57 ± 0.09, νinv = 0.609 ± 0.14
, β = 2.73 ± 0.073, α = 0.893 ± 0.077)
julia> Soss.sourceRand()(m)
quote
    σ = rand(HalfNormal())
    β = rand(Normal())
    α = rand(Normal())
    yhat = α .+ β .* x
    n = length(x)
    y = rand(For(((j,)->begin
                Normal(yhat[j], σ)
            end), n))
    (x = x, yhat = yhat, n = n
    , α = α, β = β, σ = σ, y = y)
end
@model x begin
    σ ~ HalfNormal()
    β ~ Normal()
    α ~ Normal()
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
julia> Soss.sourceLogpdf()(m)
quote
    _ℓ = 0.0
    _ℓ += logpdf(HalfNormal(), σ)
    _ℓ += logpdf(Normal(), β)
    _ℓ += logpdf(Normal(), α)
    yhat = α .+ β .* x
    n = length(x)
    _ℓ += logpdf(For(n) do j
                Normal(yhat[j], σ)
            end, y)
    return _ℓ
end
@model x begin
    σ ~ HalfNormal()
    β ~ Normal()
    α ~ Normal()
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
julia> Soss.sourceSymlogpdf()(m)
quote
    _ℓ = 0.0
    x = sympy.IndexedBase(:x)
    yhat = sympy.IndexedBase(:yhat)
    n = sympy.IndexedBase(:n)
    α = sympy.IndexedBase(:α)
    β = sympy.IndexedBase(:β)
    σ = sympy.IndexedBase(:σ)
    y = sympy.IndexedBase(:y)
    _ℓ += symlogpdf(HalfNormal(), σ)
    _ℓ += symlogpdf(Normal(), β)
    _ℓ += symlogpdf(Normal(), α)
    yhat = sympy.IndexedBase(:yhat)
    n = sympy.IndexedBase(:n)
    _ℓ += symlogpdf(For(n) do j
                Normal(yhat[j], σ)
            end, y)
    return _ℓ
end
@model x begin
    σ ~ HalfNormal()
    β ~ Normal()
    α ~ Normal()
    yhat = α .+ β .* x
    n = length(x)
    y ~ For(n) do j
        Normal(yhat[j], σ)
    end
end
julia> symlogpdf(m)
julia> symlogpdf(m) |> expandSums
-3.7-0.5α^{2}-0.5β^{2}-σ^{2}+\sum_{j_{1}=1}^{n}\left(-0.92-\logσ-\frac{0.5\left(y_{j_{1}}-\hat{y}_{j_{1}}\right)^{2}}{σ^{2}}\right)
-3.7-0.5α^{2}-0.5β^{2}-σ^{2}-0.92n-n\logσ-\frac{0.5}{\sigma^{2}}\sum_{j_{1}=1}^{n}\left(y_{j_{1}}-\hat{y}_{j_{1}}\right)^{2}
julia> symlogpdf(m()) |> expandSums |> foldConstants |> codegen
quote
    var"##add#643" = 0.0
    var"##add#643" += -3.6757541328186907
    var"##add#643" += begin
            var"##mul#644" = 1.0
            var"##mul#644" *= -0.5
            var"##mul#644" *= begin
                    var"##arg1#646" = α
                    var"##arg2#647" = 2
                    var"##symfunc#645" = (Soss._pow)(var"##arg1#646", var"##arg2#647")
                    var"##symfunc#645"
                end
            var"##mul#644"
        end
    var"##add#643" += begin
            var"##mul#648" = 1.0
            var"##mul#648" *= -0.5
            var"##mul#648" *= begin
                    var"##arg1#650" = β
                    var"##arg2#651" = 2
                    var"##symfunc#649" = (Soss._pow)(var"##arg1#650", var"##arg2#651")
                    var"##symfunc#649"
                end
            var"##mul#648"
        end
    var"##add#643" += begin
            var"##mul#652" = 1.0
            var"##mul#652" *= -1.0
            var"##mul#652" *= begin
                    var"##arg1#654" = σ
                    var"##arg2#655" = 2
                    var"##symfunc#653" = (Soss._pow)(var"##arg1#654", var"##arg2#655")
                    var"##symfunc#653"
                end
            var"##mul#652"
        end
    var"##add#643" += begin
            var"##mul#656" = 1.0
            var"##mul#656" *= -0.9189385332046727
            var"##mul#656" *= n
            var"##mul#656"
        end
    var"##add#643" += begin
            var"##mul#657" = 1.0
            var"##mul#657" *= -0.5
            var"##mul#657" *= begin
                    var"##arg1#659" = σ
                    var"##arg2#660" = -2
                    var"##symfunc#658" = (Soss._pow)(var"##arg1#659", var"##arg2#660")
                    var"##symfunc#658"
                end
            var"##mul#657" *= begin
                    let
                        var"##sum#661" = 0.0
                        begin
                            var"##lo#663" = 1
                            var"##hi#664" = n
                            @inbounds for _j1 = var"##lo#663":var"##hi#664"
                                    begin
                                        var"##Δsum#662" = begin
                                                var"##arg1#666" = begin
                                                        var"##add#668" = 0.0
                                                        var"##add#668" += begin
                                                                var"##mul#669" = 1.0
                                                                var"##mul#669" *= -1.0
                                                                var"##mul#669" *= begin
                                                                        var"##arg1#671" = yhat
                                                                        var"##arg2#672" = _j1
                                                                        var"##symfunc#670" = (getindex)(var"##arg1#671", var"##arg2#672")
                                                                        var"##symfunc#670"
                                                                    end
                                                                var"##mul#669"
                                                            end
                                                        var"##add#668" += begin
                                                                var"##arg1#674" = y
                                                                var"##arg2#675" = _j1
                                                                var"##symfunc#673" = (getindex)(var"##arg1#674", var"##arg2#675")
                                                                var"##symfunc#673"
                                                            end
                                                        var"##add#668"
                                                    end
                                                var"##arg2#667" = 2
                                                var"##symfunc#665" = (Soss._pow)(var"##arg1#666", var"##arg2#667")
                                                var"##symfunc#665"
                                            end
                                        var"##sum#661" += var"##Δsum#662"
                                    end
                                end
                        end
                        var"##sum#661"
                    end
                end
            var"##mul#657"
        end
    var"##add#643" += begin
            var"##mul#676" = 1.0
            var"##mul#676" *= -1.0
            var"##mul#676" *= n
            var"##mul#676" *= begin
                    var"##arg1#678" = σ
                    var"##symfunc#677" = (log)(var"##arg1#678")
                    var"##symfunc#677"
                end
            var"##mul#676"
        end
    var"##add#643"
end
julia> @btime logpdf($m(x=x), $truth)
1.911 μs (25 allocations: 1.42 KiB)
-901.7607073245318
julia> @btime logpdf($m(x=x), $truth, codegen)
144.671 ns (1 allocation: 896 bytes)
-903.4977930382969

Default

Code Generation

  • New feature, still in development
  • Speedup depends on lots of things
julia> m = @model begin
           a ~ @model begin
               x ~ Normal()
           end
       end;

julia> rand(m())
(a = (x = -0.20051706307697828,),)
julia> m2 = @model anotherModel begin
           y ~ anotherModel
           z ~ anotherModel
           w ~ Normal(y.a.x / z.a.x, 1)
       end;

julia> rand(m2(anotherModel=m)).w
-1.822683102320004
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end

Arguments

Body

  • Models are declarative and  function-like
  • Input the arguments
  • Output everything (as a named tuple)

Suspiciously missing:

Which variables are observed?

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> digraph(m).N     # forward
Dict{Symbol,Set{Symbol}} with 6 entries:
  :σ     => Set(Symbol[:y])
  :y     => Set(Symbol[])
  :yhat  => Set(Symbol[:y])
  :β     => Set(Symbol[:yhat])
  :Prior => Set(Symbol[:β])
  :x     => Set(Symbol[:y, :yhat])

julia> digraph(m).NN     # reverse
Dict{Symbol,Set{Symbol}} with 6 entries:
  :σ     => Set(Symbol[])
  :y     => Set(Symbol[:σ, :yhat, :x])
  :yhat  => Set(Symbol[:β, :x])
  :β     => Set(Symbol[:Prior])
  :Prior => Set(Symbol[])
  :x     => Set(Symbol[])
x
\beta
\hat{y}
y
\text{Prior}
\sigma

using Ed Scheinerman's SimpleWorld.jl

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> pred = predictive(m, :β)
@model (x, σ, β) begin
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
x
\beta
\hat{y}
y
\text{Prior}
\sigma
julia> predictive(m, :yhat)
@model (x, σ, yhat) begin
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end

using Taine Zhao's MLStyle.jl

struct Model{Args, Body} 
    args  :: Vector{Symbol}
    vals  :: NamedTuple
    dists :: NamedTuple
    retn  :: Union{Nothing, Symbol, Expr}
end

using Taine Zhao's GeneralizedGenerated.jl

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> typeof(m)
Model{
    NamedTuple{(:Prior, :x, :σ),T} 
        where T<:Tuple,
    begin
    	β ~ Prior
    	yhat = β .* x
    	y ~ For(eachindex(x)) do j
            Normal(yhat[j], σ)
        end
    end
}

Thanks to Taine Zhao for this improvement

p = @model begin
    α ~ Normal(1,1)
    β ~ Normal(α^2,1)
end
q = @model μα,σα,μβ,σβ begin
    α ~ Normal(μα,σα)
    β ~ Normal(μβ,σβ)
end 
julia> sourceParticleImportance(p,q) 
:(function ##particlemportance#737(##N#736, pars)
      @unpack (μα, σα, μβ, σβ) = pars
      ℓ = 0.0 * Particles(##N#736, Uniform())
      α = Particles(##N#736, Normal(μα, σα))
      ℓ -= logpdf(Normal(μα, σα), α)
      β = Particles(##N#736, Normal(μβ, σβ))
      ℓ -= logpdf(Normal(μβ, σβ), β)
      ℓ += logpdf(Normal(1, 1), α)
      ℓ += logpdf(Normal(α ^ 2, 1), β)
      return (ℓ, (α = α, β = β))
  end)

=> Variational Inference

\ell(x) = \log p(x) - \log q(x)
\text{Sample } x \sim q\text{, then evaluate}
hmmStep = @model s0,step,noise begin
    s1 ~ EqualMix(step.(s0))
    y ~ noise(s1.x)
end;
julia> s0 = rand(Normal(0,10), 100);

julia> particles(s0)
Part100(0.4518 ± 9.93)

julia> rand(hmmStep(args)) |> pairs
pairs(::NamedTuple) with 5 entries:
  :s0    => [7.9962, -4.30039, 8.0346, -0.628184,  …  20.3864…]
  :step  => step
  :noise => noise
  :s1    => (s = 18.0924, ν = 2.0472, x = 16.8622)
  :y     => (s = 16.8622, y = 15.0147)

julia> dynamicHMC(hmmStep(args), (y=(y=1.0,),)) |> particles
(s1 = (ν = 5.48 ± 26.0, x = 0.792 ± 0.95),)
function step(s)
    m = @model s begin
        ν ~ HalfCauchy()
        x ~ StudentT(ν, s,1)
    end
    m(s=s)
end;
function noise(s)
    m = @model s begin
        y ~ Normal(s,1)
    end
    m(s=s)
end;

Thank You!

\begin{aligned} \text{Prior} &\in \mathbb{P}(\mathbb{R}) \\ x &\in \mathbb{R}^n \\ \sigma &\in \mathbb{R}_+ \\ \\ \beta &\sim \text{Prior} \\ \hat{y} &= \beta x \\ y &\sim \text{Normal}(\hat{y},\sigma) \end{aligned}
  • Build the model
  • Sample from generative model
  • Evaluate log density
  • Sample from posterior
  • Determine predictive distribution
  • Sample from posterior predictive distribution

Goals

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> Prior = Normal()
Normal{Float64}(μ=0.0, σ=1.0)

julia> args = (Prior=Prior, x=x, σ=2.0);

julia> truth = rand(m(args));

julia> pairs(truth)
pairs(::NamedTuple) with 6 entries:
  :Prior => Normal{Float64}(μ=0.0, σ=1.0)
  :x     => [-0.556027, -0.444383, 0.0271553]
  :σ     => 2.0
  :yhat  => [0.166521, 0.133086, -0.00813259]
  :β     => -0.299484
  :y     => [3.72224, -2.15672, -0.945344]
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> pairs(args)
pairs(::NamedTuple) with 3 entries:
  :Prior => Normal{Float64}(μ=0.0, σ=1.0)
  :x     => [-0.556027, -0.444383, 0.0271553]
  :σ     => 2.0

julia> m(args)
Joint Distribution
    Bound arguments: [Prior, x, σ]
    Variables: [β, yhat, y]

@model (Prior, x, σ) begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> pairs(args)
pairs(::NamedTuple) with 3 entries:
  :Prior => Normal{Float64}(μ=0.0, σ=1.0)
  :x     => [-0.556027, -0.444383, 0.0271553]
  :σ     => 2.0

julia> post = dynamicHMC(m(args), (y=truth.y,));

julia> particles(post)
(β = -0.181 ± 0.92,)

using Tamas Papp's DynamicHMC.jl

and Fredrik Bagge Carlson's MonteCarloMeasurements.jl

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> argspost = merge(args, particles(post));

julia> pairs(argspost)
pairs(::NamedTuple) with 4 entries:
  :Prior => Normal{Float64}(μ=0.0, σ=1.0)
  :x     => [-0.556027, -0.444383, 0.0271553]
  :σ     => 2.0
  :β     => -0.18 ± 0.9
julia> pred = predictive(m, :β)
@model (x, σ, β) begin
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> argspost = merge(args, particles(post));

julia> pairs(argspost)
pairs(::NamedTuple) with 4 entries:
  :Prior => Normal{Float64}(μ=0.0, σ=1.0)
  :x     => [-0.556027, -0.444383, 0.0271553]
  :σ     => 2.0
  :β     => -0.18 ± 0.9

julia> postpred = pred(argspost) |> rand;

julia> pairs(postpred)
pairs(::NamedTuple) with 5 entries:
  :x    => [-0.556027, -0.444383, 0.0271553]
  :σ    => 2.0
  :β    => -0.18 ± 0.9
  :yhat => [0.1 ± 0.5, 0.0801 ± 0.4, -0.0049 ± 0.024]
  :y    => [-5.18 ± 0.5, 2.09 ± 0.4, 2.16 ± 0.024]
julia> pred = predictive(m, :β)
@model (x, σ, β) begin
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end

Under the Hood

m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> canonical(m)
@model (Prior, x, σ) begin
    β ~ Prior
    yhat = β .* x
    y ~ For(((j,)->begin
            Normal(yhat[j], σ)
        end), (eachindex(x),))
end
  • "There's more than one way to do it" 👍
  • Syntax → Semantics map is not faithful 👎
  • Solution: Standardize AST before processing
julia> Soss.sourceRand()(m)
quote
    β = rand(Prior)
    yhat = β .* x
    y = rand(For(((j,)->begin
            Normal(yhat[j], σ)
        end), 
        (eachindex(x),)))
    (Prior = Prior, x = x, σ = σ,
    yhat = yhat, β = β, y = y)
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> Soss.sourceLogpdf()(m)
quote
    _ℓ = 0.0
    _ℓ += logpdf(Prior, β)
    yhat = β .* x
    _ℓ += logpdf(For(eachindex(x)) do j
            Normal(yhat[j], σ)
        end, y)
    return _ℓ
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> Soss.sourceWeightedSample((y=truth.y,))(m)
quote
    _ℓ = 0.0
    β = rand(Prior)
    yhat = β .* x
    _ℓ += logpdf(For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end, y)
    return (_ℓ, 
        (Prior = Prior, x = x, σ = σ, 
            yhat = yhat, β = β, y = y)
    )
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
m = @model Prior,x,σ begin
    β ~ Prior
    yhat = β .* x
    y ~ For(eachindex(x)) do j
        Normal(yhat[j], σ)
    end
end
julia> xform(jd1, (y=truth.y,))
TransformVariables.TransformTuple{
    NamedTuple{(:β,),Tuple{TransformVariables.Identity}}
}((β = asℝ,), 1)

julia> xform(jd2, (y=truth.y,))
TransformVariables.TransformTuple{
    NamedTuple{(:β,),Tuple{TransformVariables.ShiftedExp{true,Float64}}}
}((β = asℝ₊,), 1)
julia> jd1 = m(Prior=Normal(), x=x, σ=2.0);

julia> jd2 = m(Prior=Exponential(), x=x, σ=2.0);

using Tamas Papp's TransformVariables.jl

Copy of 2023-03-Basis-LabMeeting

By Chad Scherrer

Copy of 2023-03-Basis-LabMeeting

  • 269