Deep Implicits

with Differential Rendering

Daniel Yukimura

Goals for today:

  • Differentiable Volumetric Rendering
  • Implicit Differentiable Rendering
  • Discussion

Differentiable Volumetric Rendering

Occupancy Network

f_\theta: \mathbb{R}^3 \times \mathcal{Z} \rightarrow [0,1]

Real-world scenarios

Can we infer implicit 3D representations without 3D supervision?

Architecture

  • Volumetric Rendering is differentiable here!
  • Depth gradients

Forward Pass - Rendering:

Texture mapping:

t_\theta: \mathbb{R}^3 \times \mathcal{Z} \rightarrow \mathbb{R}^3
\hat{p} = \text{``first interesection with } \{p\in \mathbb{R}^3 | f_\theta(p) = \tau \} \text{"}
\mathcal{L}(\hat{I}, I) = \sum\limits_u \|\hat{I}_u - I_u \|

Loss:

Differentiable Rendering:

\frac{\partial \mathcal{L}}{\partial\theta} = \sum\limits_u \frac{\partial \mathcal{L}}{\partial \hat{I}_u} \frac{\partial \hat{I}_u}{\partial \theta} \\
= \sum\limits_u \frac{\partial \mathcal{L}}{\partial \hat{I}_u} \frac{\partial t_\theta (\hat{p})}{\partial \theta} \frac{\partial \hat{p}}{\partial\theta}

KNOWN

??

Depth Gradients:

r(d) = r_0 + d w
\exists \hat{d} \text{ s.t. } \hat{p} = r(\hat{d})

Results

Results

Implicit Differentiable Rendering

Multiview 3D Surface Reconstruction

Input: Collection of 2D images (masked)

             with rough or noisy camera info.

Targets:

  • Geometry
  • Appearance (BRDF, lighting conditions)
  • Cameras

Method:

Geometry:

\mathcal{S}_\theta = \{ x\in \mathbb{R}^3 | f(x;\theta) = 0 \}

signed distance function (SDF) +

implicit geometric regularization (IGR)

\theta

- geometry parameters

IDR - Forward pass

R_p(\tau) = \{ c_p + t v_p | t \geq 0 \}
\hat{x}_p = \hat{x}_p(\theta, \tau) = R_p(\tau) \cap \mathcal{S}_\theta
\tau

- camera parameters

Ray cast:

(first intersection)

IDR - Forward pass

L_p(\theta, \gamma, \tau) = M(\hat{x}_p, \hat{n}_p, \hat{z}_p, v_p; \gamma)
\gamma

- appearance parameters

Output (Light Field):

Surface normal

\hat{n}_p(\theta)

Global gometry feature vector

\hat{z}_p(\hat{x}_p; \theta)

Differentiable intersections

\theta_0, \tau_0 - \text{current parameters}
\hat{x}(\theta, \tau) = c + t_0 v - \frac{v}{\nabla_x f(x_0; \theta_0) \cdot v_0} f(c + t_0 v; \theta)

Lemma:

Light Field Approx.

L(\hat{x}, w^o) = L^e(\hat{x}, w^o) + \int\limits_\Omega B(\hat{x}, \hat{n}, w^i, w^o) L^i (\hat{x}, w^i) (\hat{n}\cdot w^i) d w^i

BRDF function

out direction

income direction

emitted

radiance

incoming radiance

= M_0(\hat{x}, \hat{n}, v)
L(\theta, \gamma, \tau) = M(\hat{x}, \hat{n}, v; \gamma)

Results:

Deep Implicits

By Daniel Yukimura

Deep Implicits

  • 170