Data analytics & AI:

uses cases applied to marketing

Nicolas Rochet

2022

Some applications to marketing

Customer Segmentation

Churn prediction

Sentiment analysis

Brand reputation

SEO optimization

Recommendation

Customer Experience

Image captioning

Image generation

Attribution modeling

Some applications to marketing

Customer Segmentation

Profile customers by creating charcteristic groups

Data type

Output

Data processing

Clustering

algorithms

Association rule

Personal data

Data from a product/service use

Global customer tendencies

Classify customer in characteristic groups

...

Example of customer segmentation

Profile customers by creating charcteristic groups

Data

Results

Contract & calls data from customers of a phone company

K-Means

Clusters of customers

data preparation

Exploration of clusters specificity

Data processing

K-means

Some applications to marketing

Churn prediction

Predict client that will unsuscribe

Data type

Output

Classification

algorithms

Personal data

Data from a product/service use

Predict if a new client will churn

...

Data processing

Example of churn prediction

Data

Results

Contract & calls data from customers of a phone company

Random Forest

 Performance metrics 

data preparation

Data processing

ROC curve

confusion matrix

1
0
1
0

churn

+

Predict client that will unsuscribe

Arbres de décisions

Principe:
trouver une règle la plus optimale pour partitionner les données en "clusters" homogènes

Some applications to marketing

Sentiment analysis

Classify spontaneous sentiment from textual data

Text data

Output

Classification

algorithms

reviews

social network

messages

Predict customers opinion polarity

...

Data processing

Pre trained model

or

NLP dictionnaries

Data

Results

tweets from airlines's customer

SVM

 Performance metrics 

data preparation

Data processing

precision/recall

confusion matrix

1
0
-1
0

sentiment

+

Example of sentiment analysis

Classify spontaneous sentiment from textual data

sensitivit/specificity

Séparateur à Vaste Marge (SVM)

Support Vector Machine

Maximise la distance entre une frontière de décision et différentes classes d'échantillons

Beware of models !

Each model remains an

approximation of reality !

All models are wrong, but some are usefull, Georges Box

Your challenge consist to build models that can generalize to unseen data !

Beware of models !

Remember the over fitting problem !

Evaluate your model

You need to choose your evaluation metric according to your task :

accuracy

F1 score

precision/recall

area under ROC curve

mean squared error

pourcentage of explained variance

inter-clusters distance  mesures

Classification

Regression

Clustering

cluster homogeneity

based

measure

sensitivity/specificity

Common classification metrics

Predicted condition

Actual condiction

Confusion Matrix ... and associated metrics

\color{text}

TP

TP + FP

precision

=

\color{text}

TP

TP + FN

recall

=

fraction of real positive observations among those predicted positive

fraction of real positive observations among those really positive

Positive (P)
Positive (P)
True Positive (TP)
True Negative (TN)
False positive (FP)
False negative (FN)
Negative (N)
Negative (P)

Common classification metrics

Predicted condition

Actual condiction

\color{text}

precision x recall

precision + recall

F1 score

=

2

Confusion Matrix ... and associated metrics

\color{text}

TP

TP + FP

precision

=

\color{text}

TP

TP + FN

recall

=

Positive (P)
Positive (P)
True Positive (TP)
True Negative (TN)
False positive (FP)
False negative (FN)
Negative (N)
Negative (P)

Common classification metrics

Predicted condition

Actual condiction

\color{text}

TN = 7+9+3+5

TP = 5

Apple
Orange
Mango
Apple Orange Mango
5
2
1
5
7
3
9
5
2
5

FN = 2+5

FP = 2+1

calcul for an actual apple

Common classification metrics

Predicted condition

Actual condiction

Confusion Matrix ... and associated metrics

\color{text}

TN

FP + TN

specificity

=

\color{text}

TP

TP + FN

sensitivity

=

fraction of real negative observations among those really negative

fraction of real positive observations among those really positive

Positive (P)
Positive (P)
True Positive (TP)
True Negative (TN)
False positive (FP)
False negative (FN)
Negative (N)
Negative (P)

Predicted condition

Actual condiction

\color{text}

TP

P

true

positive rate

=

\color{text}

FP

P

false positive rate

=

Positive (P)
Positive (P)
True Positive (TP)
True Negative (TN)
False positive (FP)
False negative (FN)
Negative (N)
Negative (P)

Time for practice !

Uses cases marketing

By Nicolas Rochet

Uses cases marketing

Principles and uses cases of data anlytics for marketing

  • 25