Electrostatics

The Electric Field from The Electric Potential

\ \vec{E}=-\vec{\nabla} V\

 Electrostatics

      The influence & interaction of electric charges

           The Cast - relationship map

\vec{E}
V
\Phi
\ \vec{E}=-\vec{\nabla} V\
\ \Delta V = -\int \vec{E}\cdot d\vec{s}\
\ \Phi = \int \vec{E}\cdot d\vec{A}\
\vec{F}
U
\ \vec{F}=-\vec{\nabla} U\
\ \Delta U = -\int \vec{F}\cdot d\vec{s}\
\ \vec{F} = q_0\ \vec{E}\
\ \vec{E} = \vec{F}/q_0\ \
\ U = q_0\ V\
\ V = U/q_0\ \
q

 Electrostatics

      The influence & interaction of electric charges

           The Cast - relationship map

\vec{E}
V
\ \vec{E}=-\vec{\nabla} V\
\ \Delta V = -\int \vec{E}\cdot d\vec{s}\

 Electrostatics

      The influence & interaction of electric charges

           The Cast - relationship map

Electrostatics

The Electric Potential

The Potential Difference (aka Voltage)

 Electrostatics

      The Electric Potential

            The Electric Potential Difference (aka Voltage)

ANALOG  VOLTMETER

The Instruments measure the electric potential difference between any two points in space.

 Electrostatics

      The Electric Potential

            The Electric Potential Difference (aka Voltage)

ANALOG  VOLTMETER

The Electric Potential is defined up to an arbitrary scalar shift

Therefore, typically, it is the Electric Potential Difference that matters

The Electric Potential Difference between any two points in space, A and B, is given by:

\Delta V= V_B-V_A

 Electrostatics

      The Electric Potential

            The Electric Potential Difference (aka Voltage)

ANALOG  VOLTMETER

Typically you think of A as a reference, and you ask:

How much higer (+) or lower (-) is the Electric Potential at point B compared to the reference (at point A)

\Delta V= V_B-V_A

Electrostatics

The Electric Potential

and The Electric Field

 Electrostatics

Video walkthrough this stack

      The Electric Potential

           Relationship to the Electric Field

 Electrostatics

\vec{E}
V

The influence

of Electric Charges

      The Electric Potential

           Relationship to the Electric Field

\ \Delta V = \int \vec{E}\cdot d\vec{s}\
\ \vec{E}=-\vec{\nabla} V\

 Electrostatics

      The Electric Potential

           Relationship to the Electric Field

The Electric Field ~ the slope of the Electric Potential

\Delta V
\Delta s
\Delta V
\Delta s

 Electrostatics

      The Electric Potential

           Relationship to the Electric Field

\vec{E}
V
\ \vec{E}=-\vec{\nabla} V\
\Delta s
\Delta V
V_1
V_2
s_1
s_2

The average Electric Field

\vec{E}_\text{avg}=-\frac{~~~~~~~~}{~~~~~~~}\ \hat{s}
\Delta V
\Delta s

magnitude = Electric Potential Difference per unit length.

direction = from High potential to Low potential

V
s

 Electrostatics

      The Electric Potential

           Relationship to the Electric Field

V
s
s_1
s_2
V_1
V_2
\Delta s
\Delta V
\vec{E}
V
\ \vec{E}=-\vec{\nabla} V\
s_3
\vec{E}=-\ \frac{~~~~~~}{~~~~~}\ \hat{s}
d V
d s

The local Electric Field

\ \vec{E}=-\vec{\nabla} V\

In higher dimensions

Math Interlude

      Differential Calculus

\vec{\nabla} f{\small (r,\theta,\phi)}= \tfrac{\partial f}{\partial r}\ \hat{r} + \tfrac{1}{r}\tfrac{\partial f}{\partial \theta}\ \hat{\theta} + \tfrac{1}{r \sin\theta}\tfrac{\partial f}{\partial \phi}\ \hat{\phi}

Spherical Coordinates

\vec{\nabla} f{\small (x,y,z)}= \tfrac{\partial f}{\partial x}\ \hat{i} + \tfrac{\partial f}{\partial y}\ \hat{j} + \tfrac{\partial f}{\partial z}\ \hat{k}

Cartesian Coordinates

\vec{\nabla} f{\small (x,y,z)}= \tfrac{\partial f}{\partial x}\ \hat{i} + \tfrac{\partial f}{\partial y}\ \hat{j} + \tfrac{\partial f}{\partial z}\ \hat{k}

Cartesian Coordinates

h{\small (x,y,z)}= ay+b
\vec{\nabla} h{\small (x,y,z)}= \tfrac{\partial h}{\partial x}\ \hat{i} + \tfrac{\partial h}{\partial y}\ \hat{j} + \tfrac{\partial h}{\partial z}\ \hat{k}
= 0\ \hat{i} ~~+~ a\ \hat{j} ~~+~ 0\ \hat{k}
f{\small (x,y,z)}= axy^2+x^2 z
\vec{\nabla} f{\small (x,y,z)}=
+ x^2\ \hat{k}
+2axy\ \hat{j}
(ay^2+2xz) \hat{i}
\tfrac{\partial f}{\partial x}\ \hat{i}
+ \tfrac{\partial f}{\partial y}\ \hat{j}
+ \tfrac{\partial f}{\partial z}\ \hat{k}
=

Math Interlude

      Differential Calculus

\vec{\nabla} f{\small (r,\theta,\phi)}= \tfrac{\partial f}{\partial r}\ \hat{r} + \tfrac{1}{r}\tfrac{\partial f}{\partial \theta}\ \hat{\theta} + \tfrac{1}{r \sin\theta}\tfrac{\partial f}{\partial \phi}\ \hat{\phi}

Spherical Coordinates

Math Interlude

      Differential Calculus

\vec{\nabla} f{\small (r,\theta,\phi)}=
\tfrac{\partial f}{\partial r}\ \hat{r}
+ \tfrac{1}{r}\tfrac{\partial f}{\partial \theta}\ \hat{\theta}
+ \tfrac{1}{r \sin\theta}\tfrac{\partial f}{\partial \phi}\ \hat{\phi}
{\small \sin\phi}\ \hat{r}
\small +0\ \hat{\theta}
=
- \tfrac{r\cos\phi}{r \sin\theta}\ \hat{\phi}
\vec{\nabla} V{\small (r,\theta,\phi)}=
\tfrac{\partial V}{\partial r}\ \hat{r}
+ \tfrac{1}{r}\tfrac{\partial V}{\partial \theta}\ \hat{\theta}
+ \tfrac{1}{r \sin\theta}\tfrac{\partial V}{\partial \phi}\ \hat{\phi}
=
-\tfrac{kq}{r^2}\ \hat{r}
\small +0\ \hat{\theta}
\small +0\ \hat{\phi}
\vec{E}=\tfrac{kq}{r^2}\ \hat{r}
V=\tfrac{kq}{r}
\ \vec{E}=-\vec{\nabla} V\

For a point charge

f{\small (r,\theta,\phi)}= r \sin\phi
V{\small (r,\theta,\phi)}= \tfrac{kq}{r} + V_0

Electric Field from Electric Potential

By drmoussaphysics

Electric Field from Electric Potential

The Electric Field is the Gradient of the Electric Potential

  • 0