Interactive Dashboard Development with Plotly

 

a talk by Mart van de Ven

PLOT.LY

Those guys are cool! I've got nothing to do with them!

dynamic - hands off

hands off

widget interaction - hands on

hands on

data interaction - hands dirty

hands dirty

  1. code
  2. data
  3. widgets
  4. graphics

DASHBOARD

EVOLUTION

<CODE>

What's Plotly?

  • Plotly.js is a high-level, declarative charting library.
  • Under every plotly graph is a JSON object
  • The JSON object is parsed by plotly.js
  • Plotly isbuilt on top of d3.js and stack.gl
  • ships with 20 chart types, including 3D charts, statistical graphs, and SVG maps.

MIT license

The Twitter of Graphics

username = 'CHANGEME'
api_key = 'CHANGEME' # Get it from https://plot.ly/settings/api

import plotly.tools as tls
tls.set_credentials_file(username=username, api_key=api_key)
import plotly
from plotly.offline import plot, iplot

from plotly.graph_objs import *

plot({
    "data": [
        Scatter(x=[1, 2, 3, 4], y=[4, 1, 3, 7])
    ],
    "layout": Layout(
        title="hello world"
    )
})
# Notice that it return a file path -
# that's where it exported the
# HTML file to containing your plot
import plotly
from plotly.offline import plot, iplot

from plotly.graph_objs import *

# run at the start of every notebook
plotly.offline.init_notebook_mode() 

iplot({
    "data": [{
        "x": [1, 2, 3],
        "y": [4, 2, 5]
    }],
    "layout": {
        "title": "hello world"
    }
})

online

offline

offline - notebook

data = [
    Scatter(                            
        x=[1, 2, 3],                    
        y=[3, 1, 6],                    
        mode="markers+lines",
        marker=dict(                    
            color="rgb(16, 32, 77)"     
        )
    ),
    Bar(                            
        x=[1, 2, 3],                
        y=[3, 1, 6],                
        name="bar chart example"
    )
]

Plotly's graph description places attributes into two categories: traces (objects that describe a single series of data in a graph like Scatter or Heatmap) and layout attributes that apply to the rest of the chart, like the title, xaxis, or annotations).

layout = Layout(                
    title="simple example",     
    xaxis=dict(                 
        title="time"            
    ),
    annotations=[
        dict(                            
            text="simple annotation",    
            x=0,                         
            xref="paper",                
            y=0,                         
            yref="paper"                 
        )
    ]
)
figure = Figure(data=data, layout=layout)

iplot(figure)
<DATA>
cf.datagen.lines().iplot(
    kind='scatter',
    xTitle='Dates',
    yTitle='Returns',
    title='Cufflinks - Line Chart')
cf.datagen.lines(2).iplot(
    kind='spread',
    xTitle='Dates',
    yTitle='Return',
    title='Cufflinks - Spread Chart')
cf.datagen.scatter3d(2,150).iplot(
    kind='scatter3d',
    x='x',y='y', z='z',
    size=15,
    categories='categories',
    text='text', title='Cufflinks - Scatter 3D Chart',
    colors=['blue','pink'],width=0.5,margin=(0,0,0,0), opacity=1)
import numpy as np
import pandas as pd

import plotly
from plotly.offline import init_notebook_mode, iplot

import cufflinks as cf

init_notebook_mode()
cf.go_offline()

from a 'tidy' dataset to pivot table

# Groupby
deaths = df.groupby(['Death Year','Allegiances'])

# Aggregate Operation
df_deaths = deaths.count()[['Name']]

# Unstack
df_deaths = df_deaths.unstack().fillna(0)

# Plot
df_deaths.iplot(kind='bar')
<dashboards.ly>
<dash>

Dash Architecture

  • JSON API - describes the layout and composition of the web applications
  • HTTP API - how components depend on each other and how components should update when the front-end state changes
  • Front-end implementation - render components that are supplied to it and thread actions and event handlers into the components.
  • Component Suites - e.g. dashboards, reports, slides

JSON API

  • Each component in the interface has a specific `type`, a set of properties `props`, its own content or set of children.
  • All native HTML components, e.g. `<div>`, `<h1>`, `<img>`, `<iframe>` are supported. All of their HTML attributes, like `class`, `id`, `style` are supported as `props`.

describing components

{
    type: "div",
    props: {
        id: "parent-div",
        style: {
            backgroundColor: 'lightgrey' // distinction with HTML: style properties are camelCased
        }
    },
    children: [
        {
            type: "img",
            props: {
                src: "https://plot.ly/~chris/1638.png"
            }
        }
    ]
}
<div id="parent-div" style="background-color: lightgrey">
    <img src="https://plot.ly/~chris/1638.png"/>
</div>

JSON renders as HTML 

Higher-level components can also be specified in this specification. The front-end is responsible for understanding the component types and knowing how to render them...
{
    type: "PlotlyGraph",
    props: {
        figure: {
            data: [
                {x: [1, 2, 3], y: [4, 1, 6], type: 'scatter'},
                {x: [1, 2, 3], y: [2, 3, 9], type: 'bar'}
            ]
        }
    }
}
if available in the front-end component registry, would rendered using the `plotly.js` library.
{
    type: "div",
    children: [
        {
            type: "dropdown",
            props: {
                id: "dropdown-1"
            }
        },
        {
            type: "dropdown",
            props: {
                id: "dropdown-2",
                dependencies: ["dropdown-1"]
            }
        },
        {
            type: "PlotlyGraph",
            props: {
                dependencies: ["dropdown-1", "dropdown-2"]
            }
        }
    ]
}
<WIDGETS>
dash.layout = div([
   h5("consumer complaints"),
   div("Each week thousands of consumers' complaints "
       "about financial products are "
       "sent to companies for response.")])
<div>
   <h5>consumer complaints</h5>
   <div>Each week thousands of consumers' complaints
     about financial products are sent to companies for response.
   </div>
</div>

dash.layout : elements

Dash code in python

Generated HTML

dash.layout = div([
   h5("consumer complaints"),
   div("Each week thousands of consumers' complaints "
       "about financial products are "
       "sent to companies for response.", 
       style={"borderLeft": "lightgrey solid"})
], id="container", className="python")
<div id="container">
   <h5>consumer complaints</h5>
   <div style="border-left: lightgrey solid;">
   Each week thousands of consumers' complaints about financial products are sent to companies for response.
   </div>
</div>

dash.layout : attributes

Dash code in python

Generated HTML

Dropdown(
    id='dropdown', 
    options=[
        {'val': 'oranges', 'label': 'Oranges'},
        {'val': 'apples', 'label': 'Apples'},
        {'val': 'pineapple', 'label': 'Pineapple'}], 
    selected='oranges'
)
Slider(
    id='slider', 
    min=-5, 
    max=5, 
    step=0.2, 
    value=3, 
    label='time'
)
TextInput(
    id='textinput', 
    label='Name', 
    placeholder='James Murphy'
)
PlotlyGraph(
    id='graph', 
    figure={
    'layout': {
        'title': 'hobbs murphy experiment'},
        'data': [{'y': [3, 1, 5], 'x': [1, 2, 3]}]})
import pandas.io.data as web

from dash.react import Dash
from dash.components import (div, h2, label,
    PlotlyGraph, Dropdown)

from datetime import datetime as dt

df = web.DataReader(
    "aapl", 'yahoo',
    dt(2007, 10, 1), dt(2009, 4, 1))

Preamble & Data

dash = Dash(__name__)

dash.layout = div([
    h2('hello dash'),
    div([
        label('select y data'),
        Dropdown(id='ydata', options=[{'val': c, 'label': c}
                                      for c in df.columns])
    ]),
    PlotlyGraph(id='graph')
])

Layout

@dash.react('graph', ['ydata'])
def update_graph(ydata_dropdown):
    return {
        'figure': {
            'data': [{
                'x': df.index,
                'y': df[ydata_dropdown.selected],
                'mode': 'markers'
            }],
            'layout': {
                'yaxis': {'title': ydata_dropdown.selected},
                'margin': {'t': 0}
            }
        }
    }

if __name__ == '__main__':
    dash.server.run(port=8080, debug=True)

Callbacks

<GRAPHICS>

HTTP API

Two types of requests are made:
  • Initialization
    `GET /initialization`
    Retrieve the "`layout`" JSON that describes the application
  • Component Updating
    `POST /component-update`
    When a component changes state and has dependent components, make a request to the server with the new state of that component and retrieve a response containing the desired state of the dependent components.
    

updating components

{
    type: "div",
    children: [
        {
            type: "dropdown",
            props: {
                id: "dropdown-1",
                value: "oranges",
                options: [
                    {label: "Apples", value: "apples"},
                    {label: "Oranges", value: "oranges"}
                ]
            }
        },
        {
            type: "PlotlyGraph",
            props: {
                id: "my-graph",
                figure: {...}
            },
            dependencies: ["dropdown-1"]
        },
        {
            type: "p",
            id: "caption",
            children: "selected value of the dropdown is 'oranges'",
            dependencies: ["dropdown-1"]
        }
    ]
}

JSON Layout

{
    id: "dropdown-1",
    oldProps: {
        value: "apples",
        options: [
            {label: "Apples", value: "apples"},
            {label: "Oranges", value: "oranges"}
        ]
    },
    newProps: {
        value: "oranges",
        options: [
            {label: "Apples", value: "apples"},
            {label: "Oranges", value: "oranges"}
        ]}}

When "dropdown-1" changes, this request is made:

Example response

[{
    id: "my-graph",
    props: {
        figure: {
            layout: {...},
            data: [...]
      }}},{
        id: "caption",
        children: "new value of the dropdown is 'apples'"
    }
]

Front End Implementation

The front-end implementation is responsible for:
  • rendering the components specified from the `layout`
  • providing HTTP request trigger actions into components's `onChange` handlers (for the components that have dependents)
    
  • providing `resize`, `rearrange`, `delete`, and `edit` actions to components that will appropriately update the app's component tree and state
  • The front-end doesn't actually contain any presentational components.
  • Managing state - dash apps are stateless by design, so you shouldn't be able to mutate a dataframe and affect other users.

rendering components

// index.js
import Renderer from 'dash-renderer'
import xhr from 'xhr'

const layout = xhr.GET('/initialization')

<Renderer layout={layout}/>
// registry.js

import {
    PlotlyGraph,
    Dropdown,
    Slider
} from 'dash-basic-component-suite'

module.exports = {PlotlyGraph, Dropdown, Slider};
dash = Dash(__name__)
dash.layout = div([
    h5('click events'),
    p('click on a heatmap cell to view an x, y slice through your cursor'),
    div([
        PlotlyGraph(
            id='yslice',
            width=figy['layout']['width'], height=figy['layout']['height'],
            figure=figy),
        div([
            PlotlyGraph(
                id='heatmap', bindClick=True,
                width=figmain['layout']['width'], height=figmain['layout']['height'],
                figure=figmain),
        ], style={"display": "inline-block"}),
        div([
            PlotlyGraph(
                id='xslice',
                width=figx['layout']['width'], height=figx['layout']['height'],
                figure=figx),
        ], style={"display": "inline-block"})
    ], className="row"),

    div([
        b('click callback'),
        pre(id="event-info", style={"overflowY": "scroll"})
    ])
])

dash.layout

@dash.react('event-info', ['heatmap'])
def display_graph_event_info(heatmap):
    """Display the click object in the <pre id="event-info">.
    This function gets called when the user hovers over or clicks on
    points in the heatmap. To assign click events to graphs, set
    bindClick=True in the PlotlyGraph component.
    """
    click = ''
    if hasattr(heatmap, 'click'):
        click = json.dumps(heatmap.click, indent=4)

    return {
        'content': repr(heatmap)+'\nclick: '+click
    }

@dash.react()

@dash.react('xslice', ['heatmap'])
def plot_xslice(heatmap_graph):
    event_data = getattr(heatmap_graph, 'click')
    point = event_data['points'][0]['pointNumber']
    colNumber = point[0]
    trace = heatmap_graph.figure['data'][0]
    column = [zi[colNumber] for zi in trace['z']]
    y = trace.get('y', range(len(trace['z'])))
    return {
        'figure': {
            'data': [{
                'x': column,
                'y': y
            }],
            'layout': {
                'margin': margin
            }
        }
     }

@dash.react()

Suites of Components

  • A web-layout basics suite
  • A suite of high level controls: sliders, dropdowns, text inputs, radio items
  • A plotly graph component
  • A dashboarding suite: dashboard header; dashboard graph containers; editable text, titles, and labels; big bold indicators; light tables
  • A reporting suite: A nice title element, nice editable `h1`-`h6`, `pre`, `div`, and `p` tags
  •  A suite for creating slides and presentations

 

well, components

Dash Roadmap

  • ​Development in Public / Public Beta (~July)
  • Plotly to provide a service similar to R Shiny / shinyapps.io (~Aug)
  • Iaas for corporate deployments (~Nov)
  • Community driven component suites (2016 <)

github.com/plotly/dash/

You will only need to use

python to create dashboards ;
js to create components

Plotly to host its own version of NBviewer with authentication and user permissions

datascience.hk

Q&A

talk by Mart van de Ven | m@droste.hk

with contributions from Shivam Gaur | shivam@droste.hk

thank you

<APPENDIX>

References

Interactive Dashboard Development with Plotly

By Droste

Interactive Dashboard Development with Plotly

  • 4,518