PHYS 207.013

Chapter 12

equilibrium

Instructor: Dr. Bianco

TAs: Joey Betz; Lily Padlow

 

University of Delaware - Spring 2021

equilibrium

EM = K + U~ \mathrm{is~conserved}

H&R CH12 equilibrium & elasticity

equilibrium

\vec{F}_{net} = 0 => \frac{d\vec{P}}{dt} = 0

translational equilibrium

\vec{\tau}_{net} = 0 => \frac{d\vec{L}}{dt} = 0

rotational equilibrium

 

must be 0 with respect to any point

H&R CH12 equilibrium & elasticity

equilibrium

\vec{F}_{net} = 0 => \frac{d\vec{P}}{dt} = 0
\vec{\tau}_{net} = 0 => \frac{d\vec{L}}{dt} = 0

H&R CH12 equilibrium & elasticity

key points 

\vec{F}_{net} = 0 => \frac{d\vec{P}}{dt} = 0
\vec{\tau}_{net} = 0 => \frac{d\vec{L}}{dt} = 0

equilibrium

H&R CH12 equilibrium & elasticity

elasticity

tensile stress

H&R CH12 equilibrium & elasticity

elasticity

tensile stress

shearing stress

elasticity

tensile stress

shearing stress

hydraulic stress

elasticity

\Delta L = \frac{1}{N} L

H&R CH12 equilibrium & elasticity

elasticity

\Delta L \propto \frac{1}{N}
\Delta L \propto L

H&R CH12 equilibrium & elasticity

elasticity

\Delta L\propto \frac{1}{A}

strain (fractional change in length) is linearly related to the applied stress (force per unit area) by the proper modulus, according to the general relation

stress = modulus x strain

H&R CH12 equilibrium & elasticity

elasticity

\Delta L\propto \frac{1}{A}
\frac{F}{A} = E \frac{\Delta L}{L}

Young's law, Young's modulus

[F][A] = [p] pressure

H&R CH12 equilibrium & elasticity

elasticity

\Delta L\propto \frac{1}{A}
\frac{F}{A} = G \frac{\Delta x}{L}

shear modulus

H&R CH12 equilibrium & elasticity

elasticity

\Delta L\propto \frac{1}{A}
\frac{F}{A} = B \frac{\Delta V}{V}

hydraulic stress

H&R CH12 equilibrium & elasticity

elasticity

H&R CH12 equilibrium & elasticity

elasticity

but its more complicated... https://www.nature.com/articles/nature10739

H&R CH12 equilibrium & elasticity

elasticity

elasticity

elasticity

key points 

H&R CH12 equilibrium & elasticity

elasticity

\frac{F}{A} = E \cdot\mathrm{deformation}
  • There are 3 types of stress: stretch (acting along the length) shear (acting perpendicular to the length in one direction hydraulic (compressing perpendicularly to the length

 

  • Stress is measure as force per unit area where the area is the area of the cross section following                               

      with e proportionality constant of the material

  • Stretch

 

  • Strain

 

  • Hydraulic stress 
\frac{F}{A} = E \frac{\Delta L}{L}
\frac{F}{A} = G \frac{\Delta x}{L}
\frac{F}{A} = B \frac{\Delta V}{V}

phys207 equilibrium

By federica bianco

phys207 equilibrium

equilibrium

  • 908