(the back-and-forth method)

A fast approach to optimal transport

Flavien Léger

Joint work with Matt Jacobs (UCLA)

Our interests

We have in mind PDE-type applications:

2D or 3D, up to 100 million points,

continuous density on regular grids.

Computational OT

 - Linear programming 

 - Monge–Ampère solvers

 - Entropic regularization (Sinkhorn)

 - Benamou–Brenier 

 - Semi-discrete

Back-and-forth: up to 100 million points

Kantorovich dual

$$\sup_{\phi,\psi} \int_{\Omega} \phi(y)\,\nu(dy) - \int_{\Omega}\psi(x)\,\mu(dx)$$

 

s.t. \( \quad \phi(y) - \psi(x) \le c(x,y)\)

If \((\phi, \psi)\) is a solution pair to the dual problem then

\begin{aligned} \psi(x)=\phi^c(x):=\sup_{y\in\Omega} \, \phi(y)-c(x,y) \\ \phi(y)=\psi^c(y):=\inf_{x\in\Omega} \, \psi(x)+c(x,y) \end{aligned}

Two dual functionals

$$J(\phi)= \int_{\Omega} \phi(y)\,\nu(dy)-\int_{\Omega} \phi^c(x)\,\mu(dx)$$

$$I(\psi)= \int_{\Omega} \psi^c(y)\,\nu(dy)-\int_{\Omega} \psi(x)\,\mu(dx)$$

The \(c\)-transform and maps

From now on assume \(c(x,y)=h(y-x)\) for \(h\) strictly convex.

Define:

$$T_{\phi}(x)=\arg\max_y \phi(y)-h(y-x).$$

We have

$$T_{\phi}(x)=x+(\nabla h)^{-1}(\nabla\phi^c(x)).$$

\(c\)-transform variation

Recall

$$T_{\phi}(x)=\arg \max_{y} \phi(y)-h(y-x).$$

Then

$$(\phi + \epsilon u)^c(x) = \phi^c(x) + \epsilon \, u(T_{\phi}(x))+o(\epsilon)$$

(Gangbo–McCann '96)

Recall that \(J(\phi)=\int\phi\,d\nu-\int \phi^c\,d\mu\).

 

​First variation:

$$\delta J(\phi)u=\int u\, d(\nu-T_{\phi\, \#}\mu)$$

The back-and-forth method

\phi_{n+\frac{1}{2}}=\phi_n+\sigma \nabla_{\!H}J(\phi_n)
\psi_{n+\frac{1}{2}}=\psi_n+\sigma \nabla_{\!H}I(\psi_n)

Fundamental lemma of optimization

If \(F\colon H\to\mathbb{R}\) is a concave functional that satisfies 

 

$$\lVert \delta F(\phi_2)-\delta F(\phi_1)\rVert _{H^*} \le L\lVert \phi_2-\phi_1\rVert_H$$

 

for any \((\phi_1,\phi_2)\in H\) then the iterations

 

$$\phi_{n+1}=\phi_n+\frac{1}{L}\nabla_{\!H} F(\phi_n)$$

converge to the supremum of \(F\).

Back-and-forth is fast

\begin{aligned} \phi_{n+\frac{1}{2}}&=\phi_n+\sigma(-\Delta)^{-1}(\nu-T_{\phi_n\#}\mu) \\ \psi_{n+\frac{1}{2}}&=(\phi_{n+\frac{1}{2}})^c \end{aligned}

Operations on a grid with \(N\) points:

 - \(c\)-transform: \(O(N\ln N)\)

 - \(T_{\phi_n} : O(N\ln N) \)

 - \(\Delta^{-1}:O(N\ln N)\)

Numerical Experiments

Movies!

Caffarelli's counterexample

Santambrogio–Wang's convexity counterexample

Rectangles

\(\mu\)

\(\nu\)

Monge map \(T\)

Wasserstein gradient flows

(WIP with Matt Jacobs and Wonjun Lee (UCLA))

\(W_2\) gradient flows

\begin{cases} \partial_t\rho+\mathrm{div}(\rho\nabla\phi)=0 \\ \phi=-\delta E(\rho) \end{cases}

Consider a functional \(E(\rho)\) and the PDE

Example

$$E(\rho)=\frac{1}{m-1}\int \rho^m+\int V\rho$$

Then: porous medium equation

$$\partial_t\rho+\mathrm{div}(\rho(-\nabla V))=\Delta\rho^m$$

(Otto '01)

JKO scheme

$$\mu^{k+1}=\arg\min_{\rho} E(\rho)+\frac{1}{2\tau}W_2^2(\mu^k,\rho) .$$

Dual problem:

$$\sup_\phi -E^*(-\phi)-\int \phi^c \,d\mu^k.$$

(compare to: 

$$\sup_\phi \int\phi\,d\nu-\int \phi^c \,d\mu.$$)

(J–K–O '98)

Movies!

$$E(\rho)=\int \rho\ln\rho + \int V\,\rho$$

with

V(x)=\begin{cases} \infty\quad\text{if } x\in D \\ \lvert x\rvert^2/2 \quad\text{otherwise}\end{cases}

Slow diffusion

Slow diffusion

\displaystyle E(\rho)=\int \rho^m+\int \lvert x\rvert^2\rho
m=2
m=4

Thank you!

The back-and-forth method

By Flavien Léger

The back-and-forth method

  • 1,212