Minimizing movements with general costs,

and nonnegative cross-curvature in

infinite dimensions

Flavien Léger

joint works with Pierre-Cyril Aubin-Frankowski,

Gabriele Todeschi, François-Xavier Vialard

1. Minimizing movements with general cost

2. NNCC spaces

Implicit minimizing movements

\(X,Y\): two sets,         \(c\colon X\times Y\to\mathbb{R}\cup\{+\infty\}\)

\(g\colon X\to\mathbb{R}\cup\{+\infty\}\): energy to minimize

\begin{aligned} x_n & \in\operatorname*{argmin}_{x\in X}g(x)+c(x,y_n)\\ y_{n+1}&\in\operatorname*{argmin}_{y\in Y}c(x_n,y) \end{aligned}

I M P L I C I T   S C H E M E

\inf_{y\in Y}c(x,y)=0
\inf_{y\in Y}c(x,y)=0
\inf_{y\in Y}c(x,y)=0

Goal: geometry in which convexity of \(g\) gives convergence rates

Explicit minimizing movements

\(f\colon X\to\mathbb{R}\cup\{+\infty\}\): c-concave energy

\begin{aligned} y_{n+1}&\in\operatorname*{argmin}_{y\in Y}c(x_n,y)+f^c(y)\\ x_{n+1} & \in\operatorname*{argmin}_{x\in X}c(x,y_{n+1}) \end{aligned}

E X P L I C I T   S C H E M E

f(x)=\inf_{y\in Y}c(x,y)+f^c(y)

(majorize)

(minimize)

Explicit minimizing movements

\(X,Y\) smooth manifolds,   \(c\in C^1(X\times Y)\),   \(f\in C^1(X)\) c-concave

\begin{aligned} -\nabla_xc(x_n,y_{n+1})&=-\nabla f(x_n)\\ \nabla_xc(x_{n+1},y_{n+1})&=0 \end{aligned}

Under assumptions (twist, non-empty c-subdifferentials...), the explicit scheme can be written as

x_{n+1}-x_n=-\tau\nabla f(x_n)
c(x,y)=\frac{1}{2\tau}\lVert x-y\rVert^2
x_{n+1}=\exp_{x_n}(-\tau\nabla f(x_n))
c(x,y)=\frac{1}{2\tau}d_M^2(x,y)
\nabla u(x_{n+1})-\nabla u(x_n)=-\nabla f(x_n)
c(x,y)=u(x)-u(y)-\nabla u(y)(x-y)
x_{n+1}-x_n=-\nabla^2u(x_n)^{-1}\nabla f(x_n)
c(x,y)=u(y)-u(x)-\nabla u(x)(y-x)

EVI for Alternating Minimization

Alternating minimization (AM) of \(\phi\colon X\times Y\to\mathbb{R}\cup\{+\infty\}\)

\forall x\in X,\quad F(x_n)+D(x_n,y_n)+(1+\mu)D(x,y_{n+1})\leq F(x)+D(x,y_n)

(Csiszár–Tusnády ’84)

(L–Aubin-Frankowski ’23)

\begin{aligned} x_n & \in\operatorname*{argmin}_{x\in X}\phi(x,y_n)\\ y_{n+1}&\in\operatorname*{argmin}_{y\in Y}\phi(x_n,y) \end{aligned}
F(x)\coloneqq \inf_{y\in Y}\phi(x,y)
D(x,y)=\phi(x,y)-F(x)
\longrightarrow \quad\phi(x,y)=F(x)+D(x,y)

EVI (five-point property) for AM:

Implicit:   \(\phi(x,y)=g(x)+c(x,y)\)

Explicit:   \(\phi(x,y)=c(x,y)+f^c(y)\)

D E F I N I T I O N

(\mu\geq 0)

Convergence rates

If \((x_n,y_n)\) satisfy the EVI then

\begin{aligned} y_{n+1}&\in\operatorname*{argmin}_{y\in Y}\phi(x_n,y)\\ x_{n+1} & \in\operatorname*{argmin}_{x\in X}\phi(x,y_{n+1}) \end{aligned}
F(x_n)\leq F(x)+\frac{\phi(x,y_0)-\phi(x_0,y_0)}{n}

sublinear rates

when \(\mu=0\)

exponential rates

when \(\mu>0\)

(L–Aubin-Frankowski ’23)

F(x_n)\leq F(x)+\frac{\mu}{1+\mu}\frac{\phi(x,y_0)-\phi(x_0,y_0)}{(1+\mu)^n-1}

EVI from convexity

Suppose that for every \(y_0\in Y\) there exists \(x_0\in \argmin_{x\in X}\phi(x,y_0)\), \(y_1\in \argmin_{y\in Y}\phi(x_0,y)\), such that for each \(x\in X\),

T H E O R E M   (L–Aubin-Frankowski '24)

Then EVI

⏵ there exists a variational c-segment \(s\mapsto (x(s),y_0)\) on \((X\times Y,\phi)\) with \(x(0)=x_0\) and \(x(1)=x\)

⏵ \(s\mapsto F(x(s))-\mu \,D(x(s),y_1)\) is convex

\(\displaystyle\lim_{s\to 0^+}\frac{D(x(s),y_1)}{s}=0\)

1. Minimizing movements with general cost

2. NNCC spaces

Introduction

\(X,Y\) \(n\)-dimensional manifolds,   \(c\in C^4(X\times Y)\),   \(\nabla^2_{xy}c(x,y)\) nonsingular

MTW condition

Nonnegative cross-curvature

(Ma–Trudinger–Wang ’05)

(Trudinger–Wang ’09)

(Kim–McCann ’10)

\forall\xi\perp\eta,\quad\mathfrak{S}_c(x,y)(\xi,\eta)\geq 0
\forall(\xi,\eta),\quad\mathfrak{S}_c(x,y)(\xi,\eta)\geq 0

\(s\mapsto (x(s),\bar y)\) is a c-segment if \[\nabla_yc(x(s),\bar y)=(1-s)\nabla_yc(x(0),\bar y)+s\nabla_yc(x(1),\bar y).\]

D E F I N I T I O N

T H E O R E M   (KIM–MCCANN '10)

Under assumptions (c-convex domains...) \(c\) has nonnegative cross-curvature iff for any c-segment \(s\mapsto (x(s),\bar y)\),

\forall y\in Y,\quad s\mapsto c(x(s),\bar y)-c(x(s),y)\text{ is convex}

Variational c-segments and NNCC spaces

D E F I N I T I O N  (L–Todeschi–Vialard '24)

\(s\mapsto (x(s),\bar y)\) is a variational c-segment if \(c(x(s),\bar y)\) is finite and 

\((X\times Y,c)\) is a space with nonnegative cross-curvature (NNCC space) if variational c-segments always exist.

\(X, Y\) two arbitrary sets,   \(c\colon X\times Y\to\mathbb{R}\cup\{\pm\infty\}\).

(1-s)[c(x(0),\bar y)-c(x(0),y)]+s[c(x(1),\bar y)-c(x(1),y)].
\forall y\in Y,\quad c(x(s),\bar y)-c(x(s),y)\leq

Properties of NNCC spaces

Stable by products

Stable by projections with “equidistant fibers”

Stable under Gromov–Hausdorff convergence

Metric cost \(c(x,y)=d^2(x,y)\)     NNCC\(\implies\)PC

d^2(x(s),\bar y )\leq (1-s)d^2(x(0),\bar y)+s\,d^2(x(1),\bar y)-s(1-s)d^2(x(0),x(1))

NNCC \(\iff\)

the set of c-concave function with nonempty c-subdifferentials is convex

(connect to: Ambrosio–Gigli–Savaré ’05)

(connect to: Kim–McCann '12)

(connect to: Figalli–Kim–McCann '11)

(connect to: Loeper ’09)

Examples

Gromov–Wasserstein

Kullback–Leibler divergence, Hellinger, Fisher–Rao costs are NNCC

\mathcal{T}_c(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\int c(x,y)\,d\pi

Transport costs

\((\mathbb{G}\times\mathbb{G},\operatorname{GW}^2)\) is NCCC

\((\mathcal{P}(X)\times\mathcal{P}(Y),\mathcal{T}_c)\)  NNCC \(\iff\) \((X\times Y,c)\)   NNCC

(Polish spaces, lsc cost)

Ex: \(W_2^2\) on \(\mathbb{R}^n\), on \(\mathbb{S}^n\)...

\(\mathbf{X}=[X,f,\mu]\)   and   \(\mathbf{Y}=[Y,g,\nu]\in\mathbb{G}\)

\operatorname{GW}^2(\mathbf{X},\mathbf{Y})=\inf_{\pi\in\Pi(\mu,\nu)}\int\lvert f(x,x')-g(y,y')\rvert^2\,d\pi(x,y)\,d\pi(x',y')\,.

(L–Todeschi–Vialard '24)

Rem: strengthens PC

Variational c-segments \(\approx\) generalized geodesics

(Sturm)

Conclusion and perspectives

Variational c-segments: nonsmooth geometry for EVIs

Variational c-segments: applications to functional inequalities

NNCC spaces: applications to mechanism design

Thank you!

(Pisa 2024-12-03) NNCC

By Flavien Léger

(Pisa 2024-12-03) NNCC

  • 30