Cross-curvature: new areas of applications

Flavien Léger

joint works with François-Xavier Vialard, Pierre-Cyril Aubin-Frankowski

1. Gradient descent

2. The Laplace method

Outline

1. Gradient descent

Gradient descent as minimizing movement

Two steps: 

1) majorize: find the tangent parabola (“surrogate”)

2) minimize: minimize the surrogate

\[x_{n+1}=x_n-\frac{1}{L}\nabla f(x_n),\]

objective function \(f\colon \mathbb{R}^d\to\mathbb{R}\)

\(f\) is \(L\)-smooth if \[\nabla^2f\leq L I_{d\times d}\]

D E F I N I T I O N

\[f(x)\]

\[\leq\]

\[f(x_n)+\langle\nabla f(x_n),x-x_n\rangle+\frac{L}{2}\lVert x-x_n\rVert^2\]

The \(y\)-step and the \(x\)-step

The \(y\)-step (“majorize”): 

\[y_{n+1} = \argmin_{y}\phi(x_n,y)\]

The \(x\)-step (”minimize”):

\[x_{n+1} = \argmin_{x}\phi(x,y_{n+1})\]

Family of majorizing functions \(\phi(x,y)\)

\(\phi(\cdot,y_{n+1})\)

General cost

\[f^c(y)=\inf\{\lambda\in\mathbb{R} : \forall x\in\mathbb{R}^d, \,f(x)\le c(x,y)+\lambda\}\]

Given: \(X\) and \(f\colon X\to\mathbb{R}\)

Choose: \(Y\) and \(c(x,y)\)

\(c(\cdot,y)+f^c(y)\)

\(c(\cdot,y)+\lambda\)

\[f(x)\leq \underbrace{c(x,y)+f^c(y)}_{\phi(x,y)}\]

\(f\) is \(c\)-concave if

\[f(x)=\inf_{y\in Y}c(x,y)+f^c(y)\]

Envelope of the surrogates

D E F I N I T I O N

\[\inf_{x\in X} f(x)=\inf_{x\in X}\inf_{y\in Y} c(x,y)+f^c(y)=\phi(x,y)\]

\[\inf_{x}f(x)=\inf_{x,y}c(x,y)+f^c(y)\]

Gradient descent with a general cost

(FL–PCAF '23)

\begin{aligned} y_{n+1} &= \argmin_{y\in Y} c(x_n,y)+f^c(y)\\ x_{n+1} &= \argmin_{x\in X} c(x,y_{n+1})+f^c(y_{n+1}) \end{aligned}
\begin{aligned} -\nabla_xc(x_n,y_{n+1})&=-\nabla f(x_n)\\ \nabla_xc(x_{n+1},y_{n+1})&=0 \end{aligned}

“majorize”

“minimize”

A L G O R I T H M

\(\phi(\cdot,y_{n+1})\)

Examples

\(\bullet \,\,\,c(x,y)=\overbrace{u(x)-u(y)-\langle\nabla u(y),x-y\rangle}^{\eqqcolon u(x|y)}\): mirror descent

 

\[\nabla u(x_{n+1})-\nabla u(x_n)=-\nabla f(x_n)\]

\(\bullet\,\,\,c(x,y)=u(y|x)\): natural gradient descent

 

\[x_{n+1}-x_n=-\nabla^2 u(x_n)^{-1}\nabla f(x_n)\]

\(\bullet\,\,\,c(x,y)=\frac{L}{2}d_M^2(x,y)\): Riemannian gradient descent

 

\[x_{n+1}=\exp_{x_n}(-\frac{1}{L}\nabla f(x_n))\]

Newton

\(-\nabla_xc(x,y)=\xi\Leftrightarrow y=\exp_x(\frac{1}{L}\xi)\)

\begin{aligned} y_{n+1} &= \argmin_{y\in Y} \phi(x_n,y)\\ x_{n+1} &= \argmin_{x\in X} \phi(x,y_{n+1}) \end{aligned}

\(X,Y\),   \(\phi\colon X\times Y\to\mathbb{R}\)

Alternating minimization

\(\phi(x,y)=c(x,y)+g(x)+h(y)\)

\[\operatorname*{minimize}_{x\in X,y\in Y} \;\phi(x,y)\]

A L G O R I T H M

The five-point property

For all \(x,y,y_0,x_{1},y_{1}\),

\[\phi(x,y_{1})+(1-\lambda)\phi(x_0,y_0)\leq \phi(x,y)+(1-\lambda)\phi(x,y_0)\]

They show: \(\phi(x_n,y_n)\to\inf \phi\)

(FPP)

D E F I N I T I O N   (Csiszár–Tusnády ’84 (\(\lambda=0\)))

\[\operatorname*{minimize}_{x\in X,y\in Y} \;\phi(x,y)\]

If \(\phi\) satisfies the FPP then 

\[\phi(x_n,y_n)\leq \phi(x,y)+\frac{\phi(x,y_0)-\phi(x_0,y_0)}{n}\]

If \(\phi\) satisfies the \(\lambda\)-FPP then

\[\phi(x_n,y_n)\leq \phi(x,y)+\frac{\lambda[\phi(x,y_0)-\phi(x_0,y_0)]}{\Lambda^n-1},\]

where \(\Lambda\coloneqq(1-\lambda)^{-1}>1\).

T H E O R E M   (FL–PCAF '23)

The Kim–McCann geometry

\(\delta_c(x+\xi,y+\eta;x,y)=\underbrace{-\nabla^2_{xy}c(x,y)(\xi,\eta)}_{\text{Kim--McCann metric ('10)}}+o(\lvert\xi\rvert^2+\lvert\eta\rvert^2)\)

\(\delta_c(x',y';x,y)=\)

\[W_c(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\iint_{X\times Y}c(x,y)\,\pi(dx,dy)\]

\([c(x,y')+c(x',y)]-[c(x,y)+c(x',y')]\)

Cross-curvature

The cross-curvature or Ma–Trudinger–Wang tensor is

 

\[\mathfrak{S}_c(\xi,\eta)=(c_{ik\bar s} c^{\bar s t} c_{t \bar\jmath\bar\ell}-c_{i\bar \jmath k\bar\ell}) \xi^i\eta^{\bar\jmath}\xi^k\eta^{\bar\ell}\]

(Ma–Trudinger–Wang ’05)

\[c_{i\bar \jmath}=\frac{\partial^2c}{\partial x^i\partial y^{\bar\jmath}},\dots\]

\(\mathfrak{S}_c\) uniquely determines the curvature of the Kim–McCann metric.

D E F I N I T I O N

T H E O R E M   (Kim–McCann '11)

\[\mathfrak{S}_c\geq 0 \iff c(x(t),y)-c(x(t),y')\text{ convex in } t\]

for any Kim–McCann geodesic \(t\mapsto (x(t),y)\)

A local criteria for the five-point property

Suppose that \(c\) has nonnegative cross-curvature.

 

If \(F(x)\coloneqq\inf_{y\in Y}\phi(x,y)\) is convex on every Kim–McCann geodesic \(t\mapsto (x(t),y)\) satisfying \(\nabla_x\phi(x(0),y)=0\), then \(\phi\) satisfies the FPP.

 

"... \(F(x)-\lambda\phi(x,y)\) ..." \(\leadsto\) \(\lambda\)-FFP.

\[\phi(x,y)=c(x,y)+g(x)+h(y)\]

T H E O R E M   (FL–PCAF '23)

Application: Newton's method

\(c(x,y)=u(y|x)\longrightarrow\) NGD

 

\[x_{n+1}-x_n=-\nabla^2u(x_n)^{-1}\nabla f(x_n)\]

 

If \[\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\leq \nabla^2f\leq \nabla^2u+\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\] then

\[f(x_n)\leq f(x)+\frac{u(x_0|x)}{n}\]

Newton's method: new global convergence rate.

New condition on \(f\) similar but different from self-concordance

T H E O R E M

Riemannian/metric space setting

\(c(x,y)=\frac{1}{2\tau} d^2(x,y)\)

2. Implicit:   \(x_{n+1}=\argmin_{x} f(x)+\frac{1}{2\tau}d^2(x,x_n)\)

    \(R\leq 0\): \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

    \(R\geq 0\): if \(\mathfrak{S}_c\geq 0\) then convexity of \(f\) on Kim–McCann geodesics gives \(O(1/n)\) convergence rates

Wasserstein gradient flows, generalized geodesics (Ambrosio–Gigli–Savaré '05)

da Cruz Neto, de Lima, Oliveira ’98

Bento, Ferreira, Melo ’17

1. Explicit:   \(x_{n+1}=\exp_{x_n}\big(-\tau\nabla f(x_n)\big)\)

    \(R\geq 0\): (smoothness and) \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

    \(R\leq 0\): ? (nonlocal condition)

\[\operatorname*{minimize}_{x\in M} f(x)\]

2. The Laplace method

Motivation

  • Heat kernel asymptotics on \((M,g)\)
  • Inverse problems

\[y = T(x) + \sqrt{\varepsilon}\xi, \quad\xi\sim\mathcal{N}(0,I)\]

\[\partial_tf=\frac12\Delta f\]

\[f_t(x)=\int_Mp_t(x,y)f_0(y)\,dy\]

\[\int_M \frac{e^{-\frac{d(x,y)^2}{2t}}}{(2\pi t)^{d/2}}f_0(y)\,dy\]

vs

  • Entropic transport

\[\pi_{\varepsilon}(dx,dy)=e^{-[c(x,y)-\varphi(x)-\psi(y)]/\varepsilon}\mu(dx)\nu(dy)\]

Law of \(y\) given \(x\propto\)

\[e^{-\lVert y-T(x)\rVert^2/2\varepsilon}\]

Behavior as \(\varepsilon\to 0\) of \[I(\varepsilon)=\iint_{X\times Y}e^{-u(x,y)/\varepsilon}\,dr(x,y)\]

\(u\) vanishes on \(\Sigma=\{(x,T(x)) : x\in X\}\)

Setting

\(X,Y\)     \(u\colon X\times Y\to\mathbb{R}\),    \(u(x,y)\geq 0\)

I(\varepsilon)=\displaystyle\int_X \Big(\frac{1}{\sqrt{\det[u_{ij}]}}\Big[r + \varepsilon\Big(\frac 12 u^{ij}\partial_{ij}r-\frac 12 u_{jk\ell}u^{ij}u^{k\ell}\partial_ir \\ + \frac 18 ru_{ijk}u_{\ell mn}u^{ij}u^{k\ell}u^{mn}+\frac{1}{12} r u_{ijk}u_{\ell mn} u^{i\ell} u^{jm} u^{kn} - \frac 18 r u_{ijk\ell}u^{ij}u^{k\ell}\Big)\Big]_{(x,T(x))} + O(\varepsilon^2)

Standard Laplace's method:

 \(g_{\scriptscriptstyle\text{KM}}\) is Riemannian on \(\Sigma\)

$$-D_{xy}^2c(x,y)(\xi,\eta)\ge 0$$

The Kim–McCann geometry of \(\Sigma\)

\((X,Y,u)\)

In summary, we have 

On \(X\times Y\)

On \(\Sigma\)

Extrinsic curvatures

\(\hat g_{\scriptscriptstyle\text{KM}}\)      semi-metric

\(\hat m\)        volume form

\(\hat \nabla\)        Levi-Civita connection

\(\hat R\)        scalar curvature

\(g_{\scriptscriptstyle\text{KM}}\)      metric

\(m\)        volume form

\(\nabla\)        Levi-Civita connection

\(R\)        scalar curvature

\(h\)         second fundamental form

\(H\)        mean curvature

$$\iint_{X\times Y}\frac{e^{-u(x,y)/\varepsilon}}{(2\pi\varepsilon)^{d/2}}f(x,y)\,d\hat m(x,y) = \int_\Sigma fdm\,+$$

$$\varepsilon\int_\Sigma \bigg[-\frac 18\hat\Delta f+ \frac 14 \hat\nabla_{\!H} f+ f \Big( \frac{3}{32}\hat R-\frac18R+\frac{1}{24}\langle h,h\rangle-\frac18\langle H,H\rangle\Big)\bigg] \,dm$$

T H E O R E M

$$+O(\varepsilon^2)$$

Main result

Thank you!

(Milan 2023-10-11) Gradient descent and the Laplace method

By Flavien Léger

(Milan 2023-10-11) Gradient descent and the Laplace method

  • 292